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Abstract

The Hohenberg±Kohn theorem of density functional theory (DFT) for the case of electrons interacting with an external

magnetic ®eld (that couples to spin only) is examined in more detail than previously. An unexpected generalization is obtained:

in certain cases (which include half-metallic ferromagnets and magnetic insulators), the ground state, and hence the spin density

matrix, is invariant for some non-zero range of a shift in uniform magnetic ®eld. The energy gap in an insulator or a half-metal is

shown to be a ground state property of the N-electron system in magnetic DFT. Its relation to the gap in the Kohn±Sham

eigenvalue spectrum is analyzed. q 2001 Elsevier Science Ltd. All rights reserved.
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The half-metallic state of a ferromagnet has been

receiving increased attention since its prediction from

band theory [1,2] to be the ground state of important

magnetic materials such as CrO2 [3,4], NiMnSb [5] and

Sr2FeMoO6 [6], and several other intermetallics and oxides,

and its unusual physical properties [7]. Such systems have

become very attractive for magnetoelectronic applications,

where control of the spin degree of freedom is already lead-

ing to new devices [8]. Materials thought to be half-metals

have been connected with the phenomena of colossal

magnetoresistance (CMR) [9,10], large tunneling MR

[11], and large, low-®eld intergrain MR [12], and they

would be optimal for applications of spin valve systems

[5] for non-volatile magnetic memory and for high-density

magnetic storage.

The half-metallic state, in a one-electron picture, is a

collinear magnetic state in which one spin direction is

metallic while the other is gapped (insulating). This state

is half-metallic in another sense: the absence of low energy

spin-¯ips leads to a vanishing magnetic susceptibility like

an insulator, but its charge response (conductivity) is that of

a metal. These properties combine to give a one-electron

description of a spin-charge separated state. In fact, almost

all understanding of half-metals so far is based on the one-

electron picture, which opens up questions such as (1) What

is a half-metal in many body context? (2) Are there other

unusual possibilities in magnetic systems? One general

characterization might be in terms of conductivity (charge

response) and susceptibility (spin response) alluded to

above: in an insulator, both vanish, in a conventional

(even ferromagnetic) metal, both are non-zero, and in a

half-metal, the conductivity is non-zero while the

susceptibility vanishes. A clear many-body formulation is

however lacking.

Since density functional theory (DFT) is a rigorous many

body theory for (chosen) ground state properties, we revisit

the foundations of DFT with magnetic properties in mind.

Originally, DFT was based on the ®rst Hohenberg±Kohn

(HK) theorem [13] for spin-independent densities, which

demonstrates the existence of a unique map

n�r� 7! v�r� mod�constant�; �1�

where v is the external potential and n is the ground state

particle density. According to the second HK theorem, the

ground state energy and density are obtained as the solution
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to a variational principle:

E�v 2 m� � minn F�n�1
Z

n�v 2 m� d3r

� �

; �2�

where m is the chemical potential. Then, von Barth and

Hedin [14] pointed out that (1) cannot be generalized to

spin-dependent densities and potentials (including external

magnetic ®elds). Instead, they proved a direct unique map

nss 0 7! C from spin densities to ground state wavefunctions.

These maps were used to de®ne F[n]. However, later on, the

variational principle has been put on an independent, more

general basis [15,16] and those maps are not needed to

de®ne the density functional anymore. Nevertheless, the

uniqueness of the map (1) remains an important issue

regarding the existence and uniqueness of the functional

derivative dF=dn � 2�v 2 m� needed to justify the applica-

tion of Euler's equation (Kohn±Sham equation) for solving

(2). A non-uniqueness of m (n) (m(N)) produces the well-

known gap problem. DFT, as extended by Kohn and Sham

[17] and many others, forms the basis of our understanding

of the electronic behavior of real materials. The theory and

its extension to spin-dependent densities [14,18] has been

applied heavily, however, the HK theorem for interacting

particles with spin has been repeatedly stated to be analo-

gous to the HK theorem, although this was already

disproved in [14]. Zero susceptibility, however, would

imply that the ground state spin density does not change

when an external magnetic ®eld is changed. In this paper,

we construct a more revealing generalization of the HK

theorem, obtain explicitly the conditions that allow half-

metallicity, and demonstrate some unexpected conse-

quences.

We consider the system in an external magnetic ®eld B(r)

in the (commonly considered) non-relativistic limit, in

which the ®eld acts only on the electron spin, and the dipolar

interaction between spins is neglected. The potentials can be

combined into 2 £ 2 spin matrix

uss 0 �r� � v�r�dss 0 2 mBB�r�´~s ss 0 : �3�

The external ®eld B may vary in magnitude and direction.

Realizing that two different scalar potentials cannot lead

to the same ground state C , the original derivation of HK

[13] concluded that if C 7! v 2 m is unique then n 7! v 2 m

is also unique. Following the original derivation of HK [13],

we begin by supposing that there are two different potentials

u, u 0, which lead to the same ground state C . We show again

that C 7! �v 2 m;B� is not a unique mapping in general and

present a complete analysis of this relation.

The many-body Hamiltonian of the system is

Ĥ � T̂ 1 Ŵ 1 Û; �4�

where T̂ is the kinetic energy operator, Ŵ ; the Coulomb

interaction energy and Û; the interaction with the external

potential. The fermionic many-particle SchroÈdinger

equation is (in atomic units)

XN

i

27 2
i

2
1

XN

i,j

w�ri; rj�

2

4

3

5C�r1a1;¼; rNaN �

1

XN

i

X

bi

uai ;bi
�ri�C�r1a1;¼; ribi;¼; rNaN �

� EC�r1a1;¼; rNaN �; �5�

where ri, a i are the space and spin coordinates of the ith

electron; w�r; r 0� � e2
=ur2 r

0u is the Coulomb interaction.

Assume there are two external potentials, u, u 0, with ener-

gies E, E 0 that have the same ground state wave function

C�r1a1;¼; rNaN �: Subtracting the two many-particle

SchroÈdinger equation leads to

XN

i�1

X

bi

Duai ;bi
�ri�C�r1a1;¼; ribi;¼; rNaN�

� DEC�r1a1;¼; rNaN�; �6�

where Du � u 2 u 0
; DE � E 2 E 0

: Now, we perform a

unitary spin rotation Qss 0(r) at each point of space that diag-

onalizes the difference in potentials (i.e. rotates B to lie

along the ẑ direction:

{Q�r��Du�r��Q²�r�}ss 0 � D ~us�r�dss 0 : �7�

The wavefunction is transformed according to

YN

i

Qaia
0
i
�ri�C�r1a

0
1;¼; rNa

0
N� ; ~C �r1a1;¼; rNaN �;

where
QN

i Qaia
0
i
�ri� is the operator that rotates each of the

(a i). Collecting these results gives

XN

i�1

D ~uai
�ri�

~C �r1a1;¼; rNaN � � DE ~C �r1a1;¼; rNaN �:

~C is some {ri}-dependent multi-component function of the

2N possible spin con®gurations, at least one of which must

be non-zero. Choose a non-zero component ~C c and denote

by N", the number of ai �" values in this component. Since
~C is antisymmetric (as was C) with respect to permutations

of (ria i) with (rja j), we may renumber the particle indices in

such a way that a1 � a2 � ¼ � aN"
; aN"11 � aN"12 �

¼ � aN : This ordering lets us write

X
N"

i�1

D ~u"�ri�1
XN

i�N" 1 1

D ~u#�ri�

8

<

:

9

=

;

~C c�r1 ";¼; rN #�

� DE ~C c�r1 ";¼; rN #�: �8�

This equation must hold for all values of �r1;¼; rN �. (We

suppose u, u 0 are analytic in r except possibly at isolated

points, so that ~C c is non-zero almost everywhere.) By vary-

ing only r1, and then separately varying only rN, we obtain

D ~u" � C";D ~u# � C#; �9�
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where C", C# are constants. The special cases N" � 0 or N" �

N do not lead to new consequences. For further analysis, we

consider separate cases.

Case A: impure spin states. Suppose that there are at least

two components of ~C with different values of N" and hence

N# � N 2 N": Then

N"C" 1 �N 2 N"�C# � DE: �10�

Since this holds for two different values of N", it follows that

C" � C# ; C; which leads to D ~u" � D ~u# so Dua;b � Cda;b:

By the ground state energy minimum principle, this recovers

the usual Hohenberg±Kohn result

nss 0 � n 0
ss 0 !

v�r�2 v 0�r� ; C;

B�r�2 B
0�r� ; 0

 !

; �11�

implying a non-zero susceptibility.

Case B: pure spin states. Suppose now that all non-zero

components of ~C have the same value of N" and N#. These

may be considered as `pure spin' states, eigenfunctions of

the operator Ŝ z �
P

i s
z
aibi

=2 with eigenvalues Sz �

N" 2 �N=2� � �N" 2 N#�=2: Then C" and C# need not be

equal and we can write

D ~u �
C" 0

0 C#

 !

� �C12 mB
�Bs z

; �12�

where �C � �C" 1 C#�=2 and 2mB
�B � �C" 2 C#�=2:

Backtransforming according to the inverse of Eq. (7)

gives

Duab�r� � �Cdab 2 mB
�B�Q²�r�szQ�r��ab: �13�

The last term on the right is position-dependent, non-diag-

onal, and non-vanishing in general. In this case, the condi-

tions for identical ground state wavefunctions are

C � C 0 !
v�r�2 v 0

�r� � �C;

B�r�2 B 0�r� � �Bê�r�

 !

: �14�

where ê is the unit vector �1=2� Tr{ �sQ ²
�r�szQ�r�}: The

result (11) is modi®ed accordingly. This result is a highly

non-trivial generalization of the HK theorem: two magnetic

®elds whose difference is constant in magnitude, but

possibly is non-unidirectional, may give rise to the same

ground state.

Now we investigate the conditions on Q for which ~C is an

eigenstate of Ŝ z
;i.e. ~C describes a collinear spin arrange-

ment. Considering the Hamiltonian Eq. (4), there must be an

operator

Ûo �
XN

i�1

Qp

a 0
i
ai
�ri�s

z
a 0

i
b 0

i
Qb 0

ibi
�ri� �15�

that commutes with T̂ 1 Û 1 Ŵ : We now specialize to the

particular important case where one of the external ®elds,

B
0, is zero. This yields the behavior of a spontaneously

(without external B-®eld) spin-polarized system when a

magnetic ®eld is switched on. Since the interaction Ŵ is

spin independent, Ûo will commute with H 0 if and only if

it commutes with T̂ : One can show that this necessitates that

Q be r-independent, so that C itself is an eigenstate of Ŝ z
;

and hence is a collinear spin state. The second condition in

Eq. (14) reduces to B2 B
0 � Bẑ : a turning on of a uniform

magnetic ®eld leaves the ground state invariant. Restated: in

the subspace of collinear magnetizations, the ground state

determines the magnetic ®eld only up to some codirectional

uniform ®eld, and this is the most general possibility which

can appear with a spontaneously spin-polarized ground

state.

In the collinear case, inserting Du � mBBsz; Eq. (6)

yields

DE�B� � 2�N" 2 N#�mBB; �16�

which gives the well known dependence of energy vs ®eld

for a system of ®xed spin. Consider as a simple example a

Be atom in a uniform magnetic ®eld, with its ground state
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Fig. 1. Energy change with ®eld B for: (a) Be atom, the levels are discrete and the variation is 2SzmBB; (b) a nonmagnetic insulator, the ground

state energy is constant over a range of ®eld 2Dg , mBB , Dg, beyond which magnetization is induced; (c) a half metal, the ground state

energy varies as 2mB�N" 2 N#�B in the range Bc , B , Bv (Dv , mBB , D c). In (b) and (c), the small dots indicate a continuum extending

upwards. See text for further explanation.



characterized as 1s22s2 �N � 4;N" � 2�: The lowest excited

Ŝz-eigenstate is 1s22s2p with N" � 3: Its excitation energy is

that of a 2s ! 2p promotion. There is another excited state

1s2s22p with the same N", but the much higher excitation

energy of a 1s ! 2p core excitation. The energetically

lowest N" � 4 state is 1s2s2p2 whose excitation energy is

roughly the sum of the previous two. The situation is

sketched in Fig. 1(a), where the lines with positive slopes

correspond to states with all spins reversed.

Since states with N" � N=2^ n are degenerate for B � 0;

Fig. 1(a) may be supplemented symmetrically to the vertical

axis. Hence, for uBu , B0; the groundstate is 1s22s2 with

energy E0, for B0 , B , B1; the ground state is 1s22s2p

with energy E1 2 2mBB; and for B $ B1; the ground state

is 1s2s2p2 with energy E3 2 4mBB: The ground state does

not change with ®eld except at certain isolated values.

In an extended system, say a non-magnetic insulator with

gap D g, there is a continuum above D g (one excited electron

with reversed spin), another continuum above 2D g (two

excited electrons) and so on, as illustrated in Fig. 1(b). In

an extended system, one would prefer to consider the

intensive quantity

DE�B�

N
� 2mBB

N" 2 N#

N

� �

�17�

instead of DE itself. Then, one ®nds that for mBB , Dg; the

ground state is independent of B, beyond which the state

changes and DE/N veers off. Thus while the gap D g is not a

ground state property of the N particle system in para-

magnetic DFT (it involves the N ^ 1 particle ground states),

it is a ground state property in the presence of a uniform

®eld.

For a stoichiometric half-metal with moment per cell

mBM (M is an integer) the picture is related, except there

is an overall bias Ð a slope of 2mBM in the energy per cell

Ð and the positive and negative B directions are not

symmetric. The situation that is sketched in Fig. 1(c) has a

gap D v 1 D c for # spin states, with no gap for " spin. The

chemical potential m corresponds to the energy to remove

an " spin, and the quantities Dv � mBBv; Dc � mBuBcu
represent the energy, or ®eld, required to ¯ip a spin

from # to " , or vice versa. Note again that the interval of

B for which the state does not change, which is the gap in

the # spectrum, is a ground state property of the N particle

system in an external magnetic ®eld.

It is useful to consider the form of constrained DFT in

which N" and N# are speci®ed, which leads to two associated

chemical potentials m ", m #. Then as Ns is changed to Ns ^ 1;

m s may vary only to order 1/Ns (metallic behavior) or it may

jump discontinuously across a gap, just as is the case for

insulators [19,20]. The half-metal is de®ned as that situation

in which one and only one of m s (we have chosen # ) is

discontinuous upon addition of one electron. For an insula-

tor, there is a discontinuity in m for both spins.

We now consider the KS eigenvalue spectrum. As long as

the external ®eld shifts the bands suf®ciently little not to

disturb the half-metallicity (Bc , B , Bv), the ground

state, and hence the charge density in each spin channel,

remain unchanged. Using the same arguments as were

applied to establish the discontinuity in vxc(N(m)) for an

insulator as m crosses the gap (the kinetic energy is discon-

tinuous across the gap) [19,20], one ®nds that there is a

discontinuity in vxc,#(N",N#) if the ®lling, with N# moves m #

across the gap.1

The Kohn±Sham gap 1 g# is smaller than the true (quasi-

particle) gap Dg � Dc 1 Dv: When the magnetic ®eld is

large enough that m reaches the KS band minimum 1 c(N#),

the occupation of that channel becomes N# 1 e (with

e ! 0). This is the point of the discontinuity, where the

KS conduction eigenvalue (in fact, the entire # spectrum)

jumps upward. By comparison with Dyson's equation, and

the fact that the system ground state spin densities must be

the same whether obtained from DFT or the quasiparticle

Greens functions, this jump must be such as to make

1c#�N";N# 1 e� ; Dc; the quasiparticle conduction band

edge, for e ! 0.

It is apparent then that the KS gap in the insulating

channel is not equal to the true gap in that channel, and

that 1c�N";N#�2 m is not the true spin ¯ip energy (which

is Dc 2 m). By our de®nition (see Footnote 1), as the reverse

®eld is applied and m is driven toward the valence band

maximum 1 v#, there is no discontinuity, and the other spin

¯ip energy Ð a true excitation energy Ð is given correctly

by DFT. Needless to say, an approximation such as the local

density approximation that interpolates across the disconti-

nuity, will fail to predict both D c and D v.

We now summarize that we have presented new, rigorous

results for the Hohenberg±Kohn mapping in a magnetic

®eld. We obtain conditions that characterize half-metals:

(1) two collinear systems in different uniform magnetic

®elds may have the same half-metallic (or magnetic

insulating) ground state; (2) exactly one of the chemical

potentials m s is discontinuous upon particle addition to a

half-metal. We have pointed out other consequences,

primary among them being that the ground state energy of

a system is no longer a unique functional of the density nss 0

when magnetic ®elds are allowed (although the ground state

itself is), and that the gap in a half-metal is a ground state

property of the N particle system. These results are only

exact in the non-relativistic (c !1) limit. For c ®nite,

half-metallicity is an approximate notion due to orbital

currents and orbital moments and spin±orbit coupling that

mixes them, and the general theory [21] probably restores

the conventional theorems of DFT. Still, the notion of half-

metallicity will be an important model limit.
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