Timing is crucial

Many studies into the properties of the recently discovered ferropnictide superconductors lead to seemingly contradictory interpretations. Such discrepancies could be explained by the emergence of temporally fluctuating excitations formed by the antiphase boundaries between local spin-density-wave domains.

Warren E. Pickett

One of the first questions to be asked when a new superconductor is discovered is how do its electrons become bound to form Cooper pairs, which cooperatively result in the emergence of the superconducting state? This question is usually also the last to be answered. Indeed, it took nearly fifty years after the discovery of superconductivity itself to establish the role played by phonons in mediating the pair binding mechanism in conventional superconductors. Indeed, more than two decades since the discovery of high-temperature superconductors based on copper oxide materials (which exhibit superconducting critical temperatures of up to $T_c \sim 150$ K), there is still no agreement on any microscopic theory for their superconducting behaviour. Only in magnesium diboride (with a $T_c \sim 40$ K), which owing to its simple composition was not discovered to be a superconductor until 2001 and which has remained in a class of its own, was the pairing mechanism established relatively rapidly as an unusual variant of phonon-mediated coupling.

Consequently, it is unreasonable to expect to understand the nature of the pairing mechanism in the newest class of superconductor, the iron-based superconductors, just a year after their discovery. Most of the materials in this group are pnictides (materials that contain a pnictide element such as arsenic), and so this is how they have come to be generally known, although it does include some iron chalcogenides. The first, LaO$_x$FeAs, was found to have an already surprisingly high T_c of 26 K, which has rapidly been increased to above 55 K through the discovery of other materials in the class. It seems increasingly evident that the superconducting state in these materials emerges out of an antiferromagnetic (AF) state in a manner reminiscent of the copper oxide superconductors, but with enough differences to separate them into a distinct class of their own (for an overview see ref. 2). However, constructing a clear picture of the exact nature of their behaviour is complicated by experimental and theoretical results that don’t fit any single picture. On page XXX of this issue, Mazin and Johannes argue the viewpoint that a new type of magnetic excitation lies at the root of the most basic behaviour of these ferropnictides, and that this must be understood before one can interpret data properly and subsequently unravel the pairing mechanism.

The ferropnictides display a rather delicate, often weak, spin-density-wave (SDW) type of metallic antiferromagnetism, and it is only when this order breaks down that superconductivity emerges. This proximity of superconducting and weak-magnetic states suggests that antiparamagnons could provide the coupling mechanism. Antiparamagnons are locally AF excitations that precede a SDW transition, and Moriya has constructed a theory and discussed the connections to superconductivity. Mazin and Johannes argue that several perplexing aspects of these materials can be understood if a new type of magnetic excitation, ‘magnetic antiphasons’, emerges. Unlike antiparamagnons, which should have lowest energy for long wavelength excitations, the proposed antiphasons consist precursors to the superconducting state — that is the systems somehow ‘know’ at high temperature whether or not they will become superconducting at lower temperature.

Figure 1 | Conceptual phase diagrams in (a) the doping (x) versus temperature (T) plane at zero pressure (P), and (b) the P versus T plane for $x=0$. The phases are identified by a paramagnetic (PM), antiferromagnetic (AF), and superconducting (SC) state. In both diagrams the magnetically (and structurally) ordered phase at higher T is separated from the SC phase at lower T by a vertical (T-independent, first-order) phase boundary (narrow dashed stripe) that is yet to be understood. These diagrams suggest that the superconducting states contain precursors to the superconducting state — that is the systems somehow ‘know’ at high temperature whether or not they will become superconducting at lower temperature.
transition in addition to that between magnetic and superconducting (SC) ordering. Recently it has been discovered that in the 122 class (XFe$_2$As$_2$), where X = Ca,Sr,Ba) pressure can drive the AF to SC transition without doping (though it can also be done with doping) achieving $T_c \sim 30$ K (for X = Sr,Ba) in either case. Thus either pressure, P (of around 5 GPa, which is relatively modest by current standards), or doping can drive the materials across the AF–SC phase boundary.

Figure 1 gives an overview of the phase relationship of the pnictides constructed from the results of several different groups, showing where their AF, SC and paramagnetic (PM) phases arise on both x versus T and P versus T planes. That either x or P can drive these transitions suggests that some more-fundamental physical property, Z, dependent on both, is at the heart of such behaviour, which would be more generally described on a notional $Z(x,P)$ versus T phase diagram. Unfortunately, no one yet has much idea of exactly what Z corresponds to. Moreover, the behaviour depicted in each separate phase diagram is still incompletely understood. The vertical (temperature independent) phase boundary in particular is unusual for a PM to AF magnetic transition. Such a transition involves a change in symmetry and therefore cannot terminate at a critical point; consequently, it must intersect some other phase boundary or fall to zero. Some x–T phase diagrams in the literature have just assumed that this fall occurs3, which requires a very sharp drop in the magnetic ordering temperature as the critical doping level, x_c, is approached. But as yet there is no detailed mapping of this to definitively demonstrate such a calamitous collapse of the magnetic state. Other proposals simply pencil-in a narrow and mysterious vertical crossover region5 (as shown in Fig. 1), denoting a first-order (discontinuous) transition. The P–T phase diagram contains the same peculiar feature. Although at lower temperature $T_c(P)$ for BaFe$_2$As$_2$ (ref. 8) and for SrFe$_2$As$_2$ (ref. 9) is easy to map out as a superconducting dome, the abrupt disappearance of magnetic order at higher temperature under pressure remains enigmatic. The connection of the magnetic transition to the structural transition remains an important question (ref. 7) in Hosono-type systems, however these transitions seem to be indistinguishable in CaFe$_2$As$_2$ (ref. 10) and BaFe$_2$As$_2$ (ref. 11).

Although Mazin and Johannes3 don't provide any specific explanation of what it is about the ferropnictides that gives rise to antiphasons or the phenomena they mediate, the picture they propose has several important implications. Perhaps the most significant is with regard to the role of the paramagnetic state: Their picture of a magnetically disordered phase differs significantly from that of conventional paramagnetic phase — which is characterized by a total absence of magnetic order and the presence of only weak, incoherent antiparamagnons — in that magnetic order survives at short length scales. Consequently, the paramagnetic band structure assumes less relevance to the behaviour of the pnictides. Many in the field of high temperature superconductivity may find this disturbing, as the paramagnetic band structure contains strong nesting features (scattering processes focused at a certain momentum) that have been implicated as the mechanism causing the SDW, and a candidate to play a role in pairing. In this role, nesting has attracted much attention and stimulated many theoretical models. As in the copper oxide and heavy fermion superconductors, it seems that understanding the superconductivity in the ferropnictides will first require an understanding of their magnetic behaviour and how magnetic order within them vanishes.

Warren E. Pickett is in the Department of Physics, University of California, One Shields Avenue, Davis, California 95616-8677, USA.

e-mail: pickett@physics.ucdavis.edu

References