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Abstract. Previous measurements of the thermal conductiviof chemical vapour deposition
diamond films show values ef near, or even exceeding, that of natural diamond in spite of the
polycrystalline nature of the films. These data have led us to consider whether there can be a
‘resonant’ transfer of energy between identical crystallites separated by a material with different
vibrational properties. We consider here a model of energy transfer between diamond-structure
crystallites (Stillinger—Weber silicon) separated by a barrier region in which the mass is altered.
We find that, for a pulse of energy deposited in one crystallite, there can be an efficient transfer
of energy through the barrier region and subsequent build-up in a neighbouring crystallite if the
vibrational spectrum of the barrier region is harder than that of the crystallites. If the vibrational
spectrum of the barrier material is softer, the energy accumulation in the barrier region is at least
as rapid as in the neighbouring crystallite and energy is retained longer in the region where it
was deposited. The microscopic reasons behind this behaviour are discussed, and we conclude
that the transmission probability between neighbouring crystallites leads to a more physical
interpretation than a resonant transfer between next-neighbour crystallites.

1. Motivation

Because of the many extreme properties of diamond, the recent developments [1] in
the growth of diamond films by chemical vapour deposition (CVD) have led to many
expectations of commercial applications [2]. For the most part, such applications are still
some years away. There is, however, immediate interest in one important type of application
based on the high thermal conductivity of diamond, so-called ‘thermal management’ such
as thermal spreaders for multichip modules to conduct the heat away as quickly as possible
in a controlled manner.

Application of diamond films as thermal conductors was greatly stimulated by the
remarkable finding by Graebnet al [3-5] that, although CVD diamond films are far from
the ideal case of defect-free single crystals, nevertheless they conduct heat nearly as well as
good natural diamonds or, for selected cases, even better. This result was, and is, remarkable
when one considers the morphology of the films [1, 3]. Although CVD films show much
variation depending on parameters of deposition, those with excellent thermal conductivity,
Kk, were (as are all films except homoepitaxial ones) crystallites separated by non-crystalline
carbon. The crystallites tend to be long in the direction of growth (perpendicular to the film
surface) and to be larger in the lateral direction near the top of the film (latest in the growth
process).

The observation of good thermal conduction parallel to the film surface, in which the heat
encounters boundary after boundary between crystalline diamond and non-crystalline C (and
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perhaps CH), stimulated the present work. One possibility for explaining the kighight

be called ‘resonant heat transfer’, in which thermal energy would be transferred efficiently
between identical crystallites through a narrow region of lower thermal conductivity material.
One can imagine normal modes of a polycrystalline film that have large amplitude in the
crystallites and small amplitude in intervening material. Is it possible that, if one excites such
modes in one crystallite the energy can be transferred through the intervening material to
a neighbouring crystallite precisely because an identical vibrational spectrum and character
(frequency and wavevector) are available?

In this paper we begin to address the question of heat transfer across interfaces, but
adopt a simplified model and a molecular dynamics simulation. The model is described in
section 2. In section 3 we present the results, and we discuss their possible implications for
polycrystalline materials such as CVD diamond films in section 4.

2. Simulation model

We consider a diamond structure crystal of atoms whose interactions are described by the
Stillinger—Weber (SW) potential [6], that is, Stillinger—Weber silicon. No doubt the SW
parameters could be adjusted to provide an optimal description of diamond rather than Si,
and more sophisticated models for carbon now exist [7]. For the purposes of our model
study the specifics of the model should not be important. We do note that the potential
includes anharmonicity, so we do not study a purely harmonic model. On the other hand,
spot checks have indicated that in the calculations we report, the amplitudes are sufficiently
small that anharmonicities play no role within the timescale we explore. The SW parameters
and simulation procedures are those described previously [6, 8].

Rather than begin immediately with a system that includes structural changes across
an interface, we have chosen to concentrate first on a model without structural disorder.
Instead of a change in structure or force constants across the interface, we consider only
variations in mass, and evaluate that effect alone. Such effects could in principle be studied
experimentally by appropriate use of isotopic masses.
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Figure 1. Schematic diagram of the simulation cell used in the MD calculations, with the
regions labelled A, B, C, B Light and dark atoms indicate differing masses. The actual cell is
2 x 2 x 32 cubes of the diamond structure (1024 atoms).

We treat a supercell of 1024 atoms with periodic boundary conditions in each of the
three dimensions. The cell, shown schematically in figure 1, isxa22 32 collection of
cubic cells of the diamond structure, each containing eight atoms. Interfaces are taken to
be perpendicular to the long) direction, with the masses taken to b = 1 in cubes
1-8 (region A) and cubes 17-24 (region C), while in cubes 9-16 (region B) and 25-32
(region B) the massM; is assigned various values. Since they are equidistant from the
initial pulse of energy and have the same mass, the two regions B’aareé Bhysically but
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not mathematically equivalent because of the randomness in the initial conditions. We will
refer to them collectively as region B.

For the work we present here we introduce energy into a thin region in the centre of
region A, either by beginning with displaced atoms at rest, or with undisplaced atoms with
nonzero velocity. The displacements (or velocities) for the central plane in region A are
chosen randomly in the-z direction up to some maximum valug,,, (Or v,..). In the
bordering atomic layers the displacements (velocities) are taken randomly from the interval
[—zmax/2, O] ([—vmax/2, O]). The change in centre of mass (net momentum) is small, and
is set identically to zero by an equal displacement (velocity boost) of all atoms in the three
layers. The randomness results in forces, and then displacements xinathe y-directions
as well, making this a three-dimensional study as opposed to the one-dimensional studies
on related systems that have been carried out previously [9]. We do, however, monitor the
energy dispersion in the direction only.

For the purpose of analysis the energy was designated to individual atoms in the same
fashion as done in a previous calculation by Klwgeal [10] of the thermal conductivity
of amorphous silicon within the Green—Kubo theory. In particular, the three-body potential
energy terms of the Stillinger—Weber potential were divided among the three involved atoms
as 1/2, 1/4, and 1/4 with the 1/2 designated to the apex atom, and the two-body term was
split equally between interacting atoms.

Throughout this paper we express quantities in the natural units for the SW potential.
For the Si parameters we adopt, these are: legth).20951 nm; timez = 7.66x 10" s;
energy,e = 2.167 eV; velocity,y = [/t = 2.73 x 10° cm s'%; massM; = 28.09 amu.

3. Results

In figure 2 we show a series of surface plots in titne—-direction space. The height of

the surface at a given poirit, ¢t) is proportional to the average energy per atom in that
atomic layer of the supercell (there are eight atoms in each such atomic layer). The peak
at+ = 0 in the vicinity of unit cell 4 reflects the initial ‘thermal spike’ prepared in the
centre of the unit mass region A. This peak corresponds to a maximum initial displacement
of zmax = 0.029 ~ 0.05 A. The time step is chosen as005r = 3.8 x 10 ps as used
previously [8]. We display 4000 time steps, since that is sufficient to indicate the behaviour
we will concentrate on.

The surface plots in figure 2 for mas#, = 0.5, 1.0 and 2.0 are representative of results
we have observed for a variety of mass ratios (see below for a listing of simulations). For
a ratio of unity, i.e. a reference homogeneous crystal, the energy spreads smoothly until the
disturbance fronts collide (owing to the supercell periodicity). As the simulation proceeds,
the energy distribution over the cell is clearly tending to a uniform value, although after the
4000 time steps shown there are still strong transient energy fluctuations.

For M, = 2 the disturbance is strongly reflected and remains confined to region A.
A small amount of energy is transmitted and, on a higher resolution plot, the decrease in
velocity of the disturbance in region B is clear. For the time of this simulation, and even for
considerably longer times, very little energy is transmitted through region B into region C.

For M, = 0.5 the increase in velocity of the disturbance front is visible at the A-B
boundary. After time step- 2000, however, it is evident that the average energy density in
region C (mass\;) is becoming much higher than in region B (mads) through which
the energy was transferred. Extension of the simulation to longer times indicates that the
energy density in region C approaches that of region A while that in region B remains much
lower. After much longer times, of course, the energy will finally equalize.
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Figure 2. Surface plot of the average energy pety layer in ¢—t) space, for massef; = 1
andM, = 0.5 (@), 1 (b) and 2 €). The energy pulse (truncated in height for plotting purposes)

is deposited (rear of figure) in the centre of region A (around unit cell index 4) and spreads as
described by classical dynamical calculations. Regions B dnar®the cells 8-16 and cells
24-32, respectively. Cells 16—24 form region C.
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Figure 2. (Continued)

The salient results of the simulations can be seen by plotting the average energy/atom
in each of regions A, B, and C versus time, as done in figure 3. The energy is initially
entirely in region A; it begins to be transferred into the bounding region B aft&éi000
time steps (when the disturbance front reaches the boundary), and it reaches region C later,
at a time depending on the mass ratio.

The results can be summarized rather succinctly.M}f < 1, energy is transferred
through region B (of lighter masses than in region A) and the energy density in region C
rapidly becomes comparable to that in region A where the disturbance originated. This
occurs forM, = 1/2 in spite of the fact that the energy in region B remains at a much
lower level: the energy is not simply distributed but is transferred through the low mass
region. However, ifM, > 1 the energy is effectively trapped within region A for a
comparatively long time. We have shown in figure 3 the region-averaged plots corresponding
to the simulations shown in figure 2, except that they are extendedxtd@® time steps
= 7.6 ps. We have not pursued the question of the amount of time necessary for the energy
to equilibrate throughout the cell, except to note that there is no significant change in energy
distribution on a timescale: 5 times that shown in figure 3 (2@ime steps= 38 ps). We
have observed this phenomena for a variety of masses spanning the rhnrge® < 2.

An interesting question then is: how close must the mass ratio be to unity before this
transmission or reflection of energy becomes insignificant? Figure 4 shows the energy
distribution versus time foM, = 0.95, 0.98, 1.02 and 1.05. For comparison, see the
M, = 1 plot, figure 3b): after 15000 time steps the energies in regions B and C are equal
within the level of fluctuations, although they are still slightly below that in region A. Even
for M, = 0.98 the energy in region C approaches that within region A to within perhaps
10% while that in region B isc 30-35% less than in region A. Fad, = 1.02, after
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Figure 3. Average energy in regions A, B, and C versus time, for mas¢ges= 0.5, 1.0 and
2.0 (see text). The upper panel corresponds to the simulation shown in figure 2.

15000-20 000 time steps; 45% of the energy is still ‘blocked’ within region A (25% of
the volume).

4. Discussion

4.1. Dependence on initial conditions.

The results of simulations such as those discussed here are somewhat dependent on the
choice of the initial energy pulse. For the cases we have presented, for which atoms
in three layers only are excited, there is no important difference whether the energy is
deposited by giving a displacement or by giving an impulse. We have looked at analogous
MD simulations in which the initial energy is distributed over 16 atomic layers (144 atoms,
the inner half of region A), which we will call type 2 initial conditions, rather than the case
discussed above (three layers, involving 24 atoms), our type 1 initial conditions. Even for
the M, = 1 case (i.e. no barrier) shown in figure 5, the results were quite different. This
difference can be viewed as a distinction between the energy pulses ‘injected’ by the initial
conditions. Considering the expression for atomic displacements (or velocities) in terms
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Figure 4. Average energy in regions A, B and C versus time, for masges- 0.95, 0.98, 1.02
and 1.05. Note that even small changes in the vibrational spectrum (i.e. the relative mass) can
affect the energy transport substantially.

of phonon normal modes, the less localized pulse is expected to involve relatively many
small wavevector Q), low-frequency phonons, and therefore resembles more closely a heat
pulse. Since smalp modes are dispersionless and energy packets propagate also without
dispersion for such modes, it is plausible that there is less rapid change in the shape of the
energy pulse. We have examined this question in some detail.

4.2. Distribution of injected phonons.

By our choice of initial conditions we have ‘injected’ a pulse of normal mode vibrations,
the distribution and relative phases of which can be obtained by inverting the initial
displacements or velocities. Although SW-silicon represents the spectrum of silicon
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Figure 5. Energy dispersion results analogous to figure 3 (central panel) except that 144 atoms
were displaced instead of 24 atoms. Note that the energy has not equalized over the cell after
20000 time steps.

reasonably well, our choice of supercell with 1024 atoms and periodic boundary conditions
imposes some restriction on the dynamical behaviour that is allowed.
The dynamical matrix af = O (i.e. for periodic boundary conditions) faf, = 1 was
set up and diagonalized to obtain the frequencies and eigenvectors of the normal modes.
In the top panel of figure 6 the normal mode frequency distributio@® at 0 is shown for
our supercell. Compared with crystalline Si, it is evident from figure 6 that the density of
low-frequency modes is small. This is due to the fact that in two directions the supercell is
only two lattice constants long, so there are no long wavelength modes in those directions.
In the upper panels of figures&®(and ) the relative population of modes versus
frequency is pictured for the two types (1 and 2) of initial conditions. As expected, the
excitation of low-frequency modes is several times higher when the initial energy pulse is
distributed over a wider region. An example of one run for Mig= 1 case (equal masses,
no boundaries) is shown in figure 5. Whereas for the type 1 initial conditions the energy
is equally spread+10%) over the regions A, B, and C after8 x 10° time steps, for the
type 2 initial conditions there is still a factor of two variation aftesxx2l0* steps. From
figure 5 one might estimate that it would require 3<4.0* time steps to obtain (near)
equidistribution of energy throughout the supercell.

4.3. Relation to previous work

In their theoretical treatment of Kapitza resistance associated with a planar boundary between
two solids, Young and Maris (YM) [11] considered the scattering of incident plane waves.
They define the spectral function,

F(w) = hon(w, T)G(w)V,t(w)

for the rate of transmitted vibrational energy across the boundary. The phonon density of
states is denoted b§, n is the Bose—Einstein thermal occupation functianis the group
velocity perpendicular to the interface, an@) is an averaged transmission coefficient for
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Figure 6. The normal mode distribution at the zone centre in the supercell (lower part of each

panel), compared with the distribution of normal mode excited by the displacements of three
atomic layers containingaj 24 atoms andh() 144 atoms. The scale gives the number of modes

in 10 cnT ! bins for the lower curve, whereas the upper curve in each panel has been normalized
arbitrarily to allow comparison.

an incoming mode of frequenay. While YM were considering a very different situation

than ours it appears that there is some relationship between the two. We can consider
our initial energy pulse to be a superposition of normal modes within the slab we are
considering; e.g. initially, partition A. Our results could be compared to a YM type theory

in more detail. To do that one would use the YM function but with(w, T)G (w) replaced

with the distribution function corresponding to our energy pulse and with the use of the
SW potential and the diamond structure rather than the spring force constant model and fcc
structure of YM.

While we have not performed the above analysis, it is interesting to analyse qualitatively
our results in terms of the YM results since the SW potential is very short-ranged as was
the YM force constant model. Let us first consider energy propagation into region B for the
caseM, = 2 (see figure 2{) and figure 3 (lower panel)). Then the transmission coefficient
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t(w) is zero for the portion of the spectrum in A not appearing in B due to the larger mass
of B; the energy in that portion of the spectrum is totally reflected at the A—B boundary and
is trapped (within the harmonic approximation). On the other hand since the energy that
enters B is of a spectral range included in A then it can traverse the B—C boundary, i.e. the
transmission coefficient for B to C is non-zero for the full spectral range of B, so there is no
trivial entrapment of energy. Effects of multiple reflections at boundaries will arise in our
simulations because of our periodic boundary conditions, and they are not easily identified
and separated out. Next, consider the cése= 0.5 of figures 24) and 3 (upper panel).

The fact that A loses only about the fractiory0L.5 ~ 0.5 of its energy through both A-B
boundaries can be explained by the approximately constant valugopf(~ 0.5, see the
curve K’ = 1 in figure 6 of YM). The large build-up in energy in C can be understood in
terms ofr (w) in the YM model. From B(M = 0.5) to C (M = 1) the relevant (w) values

are given by theK’ = 1 curve in figure 8 of YM, and the initial spectrum (in B) is the
spectrum transmitted from A. As shown in that figuréy) is close to 1 for b < w < 1.3,

drops down to less than 0.4 far> 1.5, and finally goes to zero at the maximum frequency
wmax ~ 2. Ifitis assumed that(w) remains near unity down to the lowest frequencies, then

a large fraction of the spectrum is transmitted from B to C with a transmission coefficient
near unity. This circumstance, coupled with a significant reflection#(i«. ~ 0.5) at the

C-B boundary, leads to the large build-up of energy in C.

Finally, we note one other feature relating to initial conditions. A vibrational energy
transport study recently was reported [9] on ordered and disordered linear chains in the
harmonic approximation. After many periods of the maximum frequency, the energy
distribution was compared for the impulse and for the displacement initial conditions,
where a single atom was perturbed initially. The distributions were qualitatively different:
the impulse initial condition yielded a rather sharp energy front determined by the sound
velocity, whereas the displacement initial condition gave a broad distribution that extended
up to the sound velocity front. We have observed a distribution with a sharper ‘sound’
velocity front [12] for the momentum initial conditions than for the displacement conditions
but, as mentioned earlier, our results for the temporal distribution of energy do not differ
greatly between the two sets of initial conditions. Ours is a more incoherent energy insertion
and the normal mode distribution of our system is also quite different from that used for
the one-dimensional chain [9].

5. Summary

Using molecular dynamics simulations we have found (figure 4) that energy transfer through
an abrupt interface can be strongly affected by seemingly small differences in the dynamical
properties of the two regions. (Preliminary calculations that introduce mass disorder over
a few layers at the interface do not show significant difference.) The results do depend,
however, on the way the heat pulse is prepared: a pulse initially spread over a 16 atomic
layer region disperses somewhat differently than one initially spread over only four atomic

layers.

Our discussion in the previous section has been couched in idealized terminology:
regions A and C were interpreted to have a frequency spectrum characteristic of the bulk
with massM;, whereas the regions B and ®ere interpreted as representative of the bulk
crystal with massM,. This is an oversimplified picture. Actually, atoms within a few
atomic layers of the interface will not have a frequency spectrum corresponding to any
bulk crystal, but will experience the presence of both masses. Interface modes may occur;
however, they will not be excited by our choice of initial conditions so they should not be
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important in the interpretation of our simulations. In addition, many more of the model
parameters could be varied than we have done in this study.

Further work may proceed in new directions. Another way to address the question
we posed in the introduction would be to dispense with the periodic supercell, and rather
evaluate the transmission coefficient for vibrational waves impinging from a semi-infinite
region A of mass unity, encountering finite region B of ma$g and continuing on into
semi-infinite region C of unit mass. Alternatively, one can alter the periodic system, either
by introducing disorder into one or more of the regions, or by introducing force constant
disorder rather than mass disorder.
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