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Abstract –

Let us define a convenient notation. First, wavevectors
k, q,Q will always be vectors unless denoted as magni-
tude |k|. Now, for any wavevector k = (kx, ky, kz), define
k̄ ≡ (kx,−ky, kz), since the negative mass is for the ky

component. Also, the masses can be scaled out of the
zone sum (integral over k) and we will suppose that has
been done and use the same symbol k. The quadratic vHs
dispersions at Q/2 and −Q/2 (spanned by vector Q) are
(m = 1 = h̄)

ε1,k =
1

2
(k̄ −

Q̄

2
) · (k − Q/2) =

κ̄ · κ

2
, (1)

ε2,k =
1

2
(k̄ +

Q̄

2
) · (k + Q/2) =

κ̄ · κ

2
,

in terms of the deviation κ = k ± Q
2

from the vHs point,
The non-interacting susceptibility is

χo(Q + q, ω) =
∑

k

fk − fk+Q+q

εk+Q+q − εk − ω − iη
. (2)

Precisely at Q (i.e. |q|=0) (the eight values for TiAu are
given in the main text), the energy difference in the de-
nominator is zero in some volume ΩvHs around the vHs
points ±Q/2 determined by the relative importance of
third-order terms in the dispersion around the vHs. This
equality is a consequence of the quadratic form of the dis-
persion and that all vHs have the same orientation. Of
course, the numerator also vanishes, as the Fermi func-
tions (fk ≡ f(εk)) have identical arguments. Expansions
in q and ω require some care. For small but nonzero |q|,
the energy difference in the denominator is

vk+q · q = κ̄ · q. (3)

Since vk+q = κ̄, the first term in the expansion is finite,
vanishing only at the vHs point. The denominator be-
comes κ̄·q−ω−iη, familiar from conventional expressions.
Here however q → 0 indicates inter-vHs scattering rather
than forward scattering on the Fermi surface.

Considering fluctuations around the spanning vector Q,
the expressions for the low energy, small |q| behavior are
not so neatly tied to intraband scattering on the Fermi sur-
face, so they are not as intuitive as for the FM Q=0 case.
In addition, we are interested in the specific case where Q
spans not only symmetry related but also co-oriented vHs
as in TiAu. In the volume of the zone excluding ΩvHs,
χo(Q + q, ω) is unaffected by the vHs. For k inside ΩvHs

the numerator expands as

fk − fk+Q+q = [fk − fk+Q] − (
df

dǫ
)k+Qvk+Q · q

= δ(εk+Q)vk+Q · q. (4)

to lowest order in q, taking into account the equality of the
argument of the Fermi factors and the zero temperature
substitution −df/dε = δ(ε) has been made, δ(ε) is the
Dirac δ-function. The factors vk+Q · q in numerator and
denominator cancel, giving the vHs contribution to the
real part of

χvHs
o (Q = q, ω) =

ΩvHs∑
k

δ(εk) = NvHs(εF ) (5)

and there is no linear in q term. With the density of states
N(ε) being much larger near the vHs than elsewhere, this
term will contribute a local maximum in χo(Q + q, 0)
whose magnitude depends on the relative importance of
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|q|3 terms and the effective masses. These local maxima
at spanning vectors Q enhance the tendency of a finite
Q Stoner-like instability: IQχo(Q) > 1. We note in pass-
ing that the expressions above suggest significant, perhaps
strong, frequency variation at small ω. We now look at the
linear term in ω.

The imaginary part of the susceptibility at low fre-
quency is χ

′′

o (Q+q, ω) = πωξ(Q+q) in terms of the nesting
function ξ(p) that measures the phase space available for
scattering from the Fermi surface at k to the Fermi sur-
face at k + p, summed over all k. For the spanning vHs
processes for which εk = εk+Q so also f(εk) = f(εk+Q), in
the limit of small |q| the contribution from ΩvHs becomes

ξ′′o (Q + q) =

ΩvHs∑
k

δ(εk)δ(εk − εk+Q − vk+Q · q)

=

ΩvHs∑
k

δ(εk)δ(vk+Q · q)

=

∫
LvHs

dLk

|vk||∇(vk+Q · Q)|

=

∫
LvHs

dLk

|κ̄ · q|
. (6)

The line integral is along the line LvHs where the surface
κ̄ · q = 0 intersects the Fermi surface, a line of non-zero
length since there are three components of κ̄ to vary to
satisfy the two constraints κ̄ · q = 0 and εκ=0. Thus,
neglecting |k|3 terms in the vHs dispersion, the nesting
function diverges as 1/|q| as |q| → 0 at the spanning vec-
tor Q of two identically oriented vHs, as are all of the
vHs in TiAu. This divergence arises from the coincidence
(through second order) of areas of Fermi surface, as in the
case of ξ(q → 0). The imaginary part of the critical sus-
ceptibility then has the form γω/|q|, the same as for ferro-

magnetic fluctuations. This form is distinct from that of
conventional AFM fluctuations used by Moriya and oth-
ers, which has no |q|−1 divergence. Thus the critical sus-
ceptibility maps onto that for ferromagnets, distinguishing
TiAu from other wAFMs. The |q|−1 divergence of Imχo

will be modulated by thermal smearing and fluctuations
of other degrees of freedom.

As an example of the implications, the phonon linewidth
from electron-phonon (EP) coupling is given by the sum
defining ξ(q) but with EP matrix elements within the sum.
The divergence of ξ(Q + q) as |q| →0 will lead to sharp
Kohn anomalies in the phonon spectrum above the order-
ing temperature, below which they will vanish.
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