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Spin and charge fluctuations in α-structure layered nitride superconductors
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To explore conditions underlying the superconductivity in electron-doped TiNCl where Tc = 16 K, we
calculate the electronic structure, Wannier functions, and spin and charge susceptibilities using first-principles
density functional theory. TiNCl is the first high-temperature superconductor discovered in the α structure of
the layered transition-metal nitride family MNCl (M = Ti,Zr,Hf). We construct a tight-binding model based on
Wannier functions derived from the band structure, and consider explicit electronic interactions in a multiband
Hubbard Hamiltonian, where the interactions are treated within the random phase approximation to calculate
spin and charge susceptibility. The results show that, consistent with TiNCl being a nonmagnetic material, spin
fluctuations do not dominate over charge fluctuations and both may have comparable impact on the properties of
the doped system.
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I. INTRODUCTION AND BACKGROUND

High-temperature superconductivity (HTSC) has been a
widely pursued subject for condensed matter physicists for
over two decades. There are several classes of materials where
unconventional superconductivity is found: cuprates whose
highest Tc’s remain unrivaled, the recently discovered and
intensively studied iron pnictides, Na1−xCoO2 intercalated
with H2O, BaBiO3 doped by K, the Pu-based “115” heavy-
fermion series, and the transition-metal nitride halides MNX
(M = Zr,Hf; X = Cl,Br,I). MNX crystallizes in two structures,
labeled α and β. The Zr and Hf members were found to be
superconducting with unprecedented critical temperatures for
nitrides (15 K, 25 K) in the β structure, which is isostructural
to SmSI, and contains double-honeycomb layers of alternating
M and N atoms.1 The sister compound TiNCl with α structure
has now been discovered to superconduct (16 K) as well.2

Based on many examples now, layered structures seem to
favor high-temperature superconductivity. The reduced dimen-
sionality promotes various instabilities associated with Fermi
surface nesting. Due to electron-electron interactions, many
parent compounds of HTSCs exhibit long-range magnetic
order, such as antiferromagnetism (AFM) in cuprates and iron
pnictides. The AFM order needs to be destroyed upon doping,
by electrons or by holes, to open the way for superconductivity.
This is not the case for nonmagnetic MNX, which are band
insulators with a band gap of 2–4 eV, and the transition-metal
d states make up most of the lower conduction bands.3

Both the α and β polymorphs are quasi-two-dimensional
(quasi-2D) structures with large interlayer spacing and weak
van der Waals coupling between layers. When doped with
electrons, AxMNX (A being alkali metals) remains insulating
at low concentration, then suddenly become superconducting
at about x = 0.13 in HfNCl and x = 0.06 in ZrNCl, and
maintains a relatively constant Tc up to x = 0.5 (Ref. 4). The
superconducting transition temperature can be as high as 26 K,
discovered in Lix(THF)yHfNCl.5 It has also been found that
Tc may be correlated with the interlayer spacing, which can
be tuned by intercalation of different-sized molecules.6 Also,
the electron doping can be substituted by ion vacancy of the
Cl atoms with similar superconductivity being found.7 In a
theoretical treatment by Bill et al., the dynamical screening
of electronic interactions in these materials was modeled8,9

by conducting sheets spaced by dielectrics.10 A fully open
large superconducting gap without nodes was observed with
tunneling spectroscopy.11–13

Experimental observations from several perspectives con-
firm that MNX are not electron-phonon BCS superconductors:
(1) measured isotope effects are small;14,15 (2) specific heat
measurements16 indicate a small mass enhancement factor;
(3) the density of states at the Fermi level is small (when
electron doped), and Tc is almost independent of the doping
level in the range 0.15 < x < 0.5. As a feature peculiar to this
system, Tc actually increases as the metal-insulator transition at
xcr = 0.06 is approached, rather than following the common
dome shape with doping. Linear response calculations also
agree on the small electron-phonon coupling constant17 which
cannot account for the observed Tc. The impressive high transi-
tion temperatures and easy tunability of carrier concentrations
(and sometimes effective dimensionality) suggest that there is
potential to reach higher Tc in this class.18

The possible candidates for the pairing mechanism respon-
sible for the observed high Tc are spin and charge fluctuations,
which have been discussed by both experimentalists and
theorists, but opinions remain controversial. The specific
heat measurement on LixZrNCl is suggestive of relatively
strong coupling superconductivity, based on the observed
large gap ratio and specific jump16 at Tc. The interlayer
spacing dependence of Tc reveals the close relation between
the pairing interaction and topology of the Fermi surface,6

implying a spin- and/or charge-induced superconductivity.
The magnetic susceptibility measurement of heavily doped
Lix(THF)yHfNCl indicates low carrier density and negligible
mass enhancement factor, in favor of charge fluctuations over
spin fluctuations.19

A detailed measurement of the doping dependence of
specific heat and magnetic susceptibility has been performed
on LixZrNCl and the data were compared with calculations
based on a model Hamiltonian,20,21 which shows a correlation
between Tc and magnetic susceptibility. Some change is
occurring that affects both, but a causal relationship has not
been established. There have been several band structure
calculations for ZrNCl and HfNCl that provide the basis
for more specific studies, mostly in the superconducting
β structure.3,22–24
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Recently, Yamanaka et al.2 reported superconductivity in
the alkali-metal-intercalated α-TiNCl, with Tc up to 16.5 K.
This is the first MNX compound found to be superconduct-
ing in the α structure. The lack of Fermi surface nesting
in α-LixTiNCl seems to exclude any dramatic magnetic
fluctuations, and the lack of evidence for local moment
magnetism or temperature-dependent susceptibility makes
magnetic fluctuations an unlikely mechanism for pairing. Its
low carrier density character is potentially more interesting:
weak screening in the background of highly charged ions (such
as can be accounted for together25), and the strong effect of
two-dimensionality on collective charge excitations (the 2D
plasmon disperses as

√
q) suggest charge fluctuations as a

more likely pairing mechanism.
On the theoretical side, charge-fluctuation-induced super-

conductivity has been discussed in the Hubbard model,26,27 the
d-p model,28 and has been applied to study NaxCoO2 · yH 2O
(Refs. 29 and 30) and organic molecular superconductors.31

Spin-fluctuation-mediated pairing has been discussed in re-
lation to cuprate and heavy-fermion superconductivity by
numerous authors; see Ref. 32. The studies have typically
considered the strong interaction regime. In the opposite
limit, dynamic screening in the homogeneous electron gas
has also been studied to assess the possibility of regimes
of overscreening that might result in pairing.33–35 Charge-
fluctuation-mediated pairing in real (inhomogeneous) systems
but not in the strong interaction limit has been addressed,8,9

though less often due to the numerous (but interesting)
complications that arise.

In one way or another, almost all proposed mechanisms
focus on the “susceptibility loop” diagram as providing the
generalized boson that results in attraction and hence pairing.
This loop, which occurs in the electronic self-energy diagram,
has attracted much attention, and approaches from the ab initio,
density functional viewpoint have gained attention in recent
years due to sophisticated codes, improved algorithms, and
ever-increasing computational power. Concern in d-electron
compounds has extended from the susceptibility (dielectric
screening and the magnetic analog) to its effects on the
electronic excitation spectrum itself36,37 and subsequently
to the further effects on the susceptibility (mostly focusing
on the gap-widening feature).38,39 The various approximations
that have been tried are reflective of the fact that, in the
electron-electron interaction, there is no small parameter that
allows controlled perturbation-theoretic procedures.

It is evident that a more detailed investigation of the
electronic structure and dynamical spin and/or charge sus-
ceptibility is needed to study the superconducting mechanism
in α-TiNCl. In the present work, we carry out a calcula-
tion of spin and charge susceptibilities using a many-body
Hamiltonian, based on a realistic band structure calculated by
density functional theory and taking into account explicitly
on-site (Hubbard U) repulsion, intersite (extended Hubbard)
charge repulsion, Hund’s rule coupling, and interorbital “pair
hopping” processes in a multiband system. These interactions
are based on the random phase approximation (RPA), which
should be reasonably reliable in systems like these where
vertex corrections should not be large. It can be noted
that the (exact) density functional expression for the static
susceptibility assumes an RPA-like form,40 with a well-

defined prescription of the screened (and correlated) Coulomb
interaction in the denominator. Our local orbital basis enables
a direct separation of contributions from different orbitals,
and among other findings we show that the structure of the
susceptibility in the wave vector q is strongly affected by
matrix elements.

II. CRYSTAL STRUCTURE

The α structure2 of the MNX class of compounds, often
called the FeOCl structure, is shown in Fig. 1, with structural
data given in Table I. The α-structure TiNCl belongs to space
group Pmmn (no. 59), with six atoms per unit cell occupying
the following sites: Ti(2b) (0, 1

2 ,zTi), N(2a) ( 1
2 , 1

2 ,zN), and
Cl(2a) (0,0,zCl). The generators of Pmmn are two simple
reflections x → −x and y → −y, and the nonsymmorphic
reflection z → −z, followed by a ( 1

2 , 1
2 ,0) translation.

The Ti-N net within TiNCl is topologically equivalent to
that of a single NaCl layer. There is strong buckling of this
Ti-N net perpendicular to the b direction, such that neighboring
chains that are directed along a differ in height. These chains
are themselves somewhat buckled, all of this leading to the
placement of Ti ions ±0.8 Å from the average height and N
ions ±0.4 Å from the average height. The Ti ions are twofold
coordinated by Cl ions lying in the y-z plane; the breaking of
square symmetry of the TiN layer by its strong buckling can
be regarded as “due to” this positioning of the Cl ions.

Finally, each Ti is sixfold coordinated by four N and two
Cl atoms. The two Ti-N bonds have very close lengths of 2.008
and 2.015 Å, respectively, though the N ions lie at different
heights in the x and y directions. Very roughly, the Ti ion
is in octahedral coordination (see Fig. 5 of Ref. [2]), with
approximate axes (1,0,0) (toward two neighboring N ions),
and (0,1,1) and (0,1,−1) (each toward one N and one Cl ion),

FIG. 1. (Color online) Crystal structure of α-phase TiNCl (Pmmn,
no. 59). Viewpoint is along the b axis, perpendicular to the
buckling of the Ti-N net. The buckled Ti-N layer leaves each Ti
coordinated (roughly octahedrally) by four N and two Cl atoms.
The Cl coordinates with Ti along the b axis, which accounts for its
orthorhombic structure.
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TABLE I. Lattice constants (in units of Å) and internal structural
parameter z for the three atoms. Experimental values are from Ref. 2.
The theoretical values are our optimized values.

a b c zTi zN zCl

Expt. 3.938 3.258 7.800 0.1011 0.0509 0.3322
Theory 3.891 3.200 7.699 0.1011 0.0522 0.3384

and indeed a rough t2g-eg splitting of the Ti 3d states results.
The Ti-Ti distance is 3.003 Å, not much larger than that of
Ti-N due to the buckled layer structure, so in the tight-binding
model we construct in the next section, the hoppings between
Ti sites are also important.

The experimental lattice constants and atomic positions,
and relaxed structure parameters with respect to total energy,
which are used in our calculation, are listed in Table I. The
calculations (see below) confirm the expected formal valences.
The calculated lattice constants are 1%–1.5% smaller than the
experimental values, but this has little effect on the electronic
structure. TiNCl is still calculated to be an ionic insulator and
its theoretical gap is similar to what is calculated using the
experimental lattice parameters.

III. BAND STRUCTURE AND WANNIER FUNCTIONS

A. Methods

The band structure has been computed by the full-potential
local orbital minimal basis set method implemented in the FPLO

code.41 The exchange correlation is treated by the generalized
gradient approximation GGA96,42 and the k mesh used is
16 × 16 × 8. The effect of spin-orbit coupling is small so
calculations were done in the scalar relativistic scheme.

B. Electronic structure

The calculated band structure of pristine TiNCl is shown
in Fig. 2 and is generally consistent with that presented by
Yamanaka et al.2 plotted along other lines in the zone. It is an
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FIG. 2. (Color online) Band structure of TiNCl along the or-
thorhombic symmetry lines, calculated with the GGA exchange-
correlation functional. The thick “fatbands” are the tight-binding
representation determined by the Wannier functions labeled in the
inset, chosen to represent accurately the bands at and around the
Fermi level after doping.
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FIG. 3. (Color online) Total and partial densities of states of
TiNCl, showing the Ti 3d–N 2p mixing. The inset figure is a blow-up
of the region near the Fermi level.

insulator with a calculated energy gap of 0.5 eV. The real band
gap may be as large as 1 eV, based on the common observation
that the local density approximation and generalized gradient
approximation underestimate gaps in insulators. The band
structure exhibits clearly a two-dimensional feature, gauged
from the general flatness of bands along the �-Z direction
perpendicular to the layers. The states on either side of the gap
are very two dimensional, considering the extreme flatness of
those bands along �-Z.

The twelve valence bands are made of six N 2p and six
Cl 3p states, and the conduction band is comprised of ten Ti
3d states. The 3d bands show a “t2g-eg” crystal field splitting
(three states below and two above), which arises in spite of
the nonequivalence of the five 3d orbitals in this structure.
As can be seen in the partial density of states plotted in
Fig. 3, there is 3d weight in the valence bands and N weight
in the conduction bands, reflecting substantial N 2p–Ti 3d

hybridization in addition to the ionic character reflected in
their formal charges.

Whereas the 3d environment appears locally to be pseu-
docubic, the low site symmetry severely splits the N 2p states,
with 2px and 2py becoming quite distinct. The top valence
band has primarily N 2px character, which extends down to
−5 eV. The N py and pz bands have their maximum 1 eV
lower, and the Cl 2p weight is concentrated at the bottom of
the valence bands.

The inset in Fig. 3 shows an enlargement of the total
and atom-projected density of states (DOS) around the Fermi
energy. The onset at 0.5 eV and the smooth slope to 1.2 eV
are characteristic of a two-dimensional band which becomes
nonparabolic away from the band edge, and strongly so in the
1.2–1.5 eV region. At 1.5 eV the onset of the second band,
with its much heavier mass, is clear. However, the DOS does
not have the sharp step at the top of the valence band that is
characteristic of a 2D system.

The Ti 3d orbitals are lifted in degeneracy entirely by the
orthorhombic point group site symmetry, but as mentioned
above the conduction bands are separated by a crystal
field analogous to cubic t2g-eg splitting. Checking the band
character reveals that, in terms of 3d orbitals expressed in
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terms of the orthorhombic coordinate axes, dxy,dz2 ,dxz have
most of the weight in the 0.5–3 eV region, and dyz,dx2−y2 are
in a higher-energy window of 4–6 eV. Thus it is feasible, in a
low-energy tight-binding model, to include only Ti dxy,dz2 ,dxz

and N 2px states. Plotted on top of the density functional
theory (DFT) bands in Fig. 2 is the tight-binding fit using the
Wannier functions. The representation of the full t2g complex
is excellent, as is that of the top of the upper valence band.

The distance between TiNCl slabs and the weak interlayer
coupling allows intercalation of alkali-metal atoms, which
act as electron donors. This feature validates the rigid band
shift approximation in simulating doping. Doped-in electronic
carriers will go into the single lowest conduction band, which
is quite two dimensional as mentioned above but is dispersive
within the plane. This band has strong Ti 3dxy character, similar
to the in-plane 4d character in ZrNCl. The Fermi surface of
electron-doped TiNCl is an oval centered at the � point. This
point has some relevance for the superconductivity, since with
a single Fermi surface there can be no nesting of disconnected
Fermi surfaces, such as are proposed21 to play an important role
in many other layered superconductors, such as Fe pnictides, as
well as β-structured ZrNCl and HfNCl. The similar characters
of TiNCl and ZrNCl, and their similar values of Tc, suggest
that possible nesting of Fermi surfaces is not an important
feature for pairing in the materials.

C. Wannier functions

Because the susceptibilities we will calculate have a number
of local orbital matrix elements equal to the fourth power of
the number of orbitals retained, we have calculated selected
low-energy Wannier functions (WFs) that will be used to
construct our many-body Hamiltonian, using projections of
the Bloch states onto the corresponding atomic orbitals. The
four atomic orbitals mentioned above allow us to reproduce
the bands on either side of the gap: Ti dxy,dz2 ,dxz and N px .
While the Ti “t2g” orbitals are not optimal in diagonalizing the
local “octahedral” symmetry, they and their relation to the 2px

orbital are more readily visualized. Since the RPA calculations
described below were performed in the electron-doped region
where the Fermi level is shifted into the conduction bands,
considering only the N px WF in the valence band is sufficient
to understand the q dependence. Aside from being farther
removed in energy, the remainder of the valence bands form a
complex of bands spread uniformly over the zone, contributing
little to any q dependence.

The Ti-N layer is strongly buckled and there are two Ti
and two N atoms per unit cell with different z coordinates. The
actual tight-binding model contains eight bands and eight WFs,
but WFs on symmetry-related ions are symmetry equivalent.
Overall, the Wannier orbitals generate a well-represented
band structure compared to the DFT bands within the energy
window of interest, as shown in Fig. 2.

The hopping amplitudes of the Wannier orbitals are listed
in Table II. Hopping integrals smaller than 0.05 eV were not
listed because they only marginally alter the band structure
and obfuscate interpretation. The on-site energies of the “t2g”
orbitals are 2.25 ± 0.08 eV, lying within the largest peak of
the DOS. The px energy is −3.22 eV, in the middle of the
valence bands. Thus there is a 5.5 eV separation of valence
and conduction band centers, and a gap of 0.5 eV.

TABLE II. Nearest-, second-, and third-neighbor hopping inte-
grals in units of eV. The hopping vectors are in units of [a/2,b/2,c],
and �z represents the difference between the z coordinates of the two
orbitals. This representation is purely two dimensional (no coupling
along the c axis).

(μ,ν) [0,0,0] [1,0,�z] [0,1,�z] [1,1,�z] [2,0,0] [0,2,0]

(dxy,dxy) 2.33 −0.16 −0.17 −0.18
(dxy,dz2 ) −0.08
(dxy,dxz) 0.07 −0.11
(dz2 ,dz2 ) 2.18 −0.05
(dz2 ,dxz) 0.19 0.07
(dxz,dxz) 2.25 −0.05 0.13
(dxy,px) −0.33
(dz2 ,px) 0.24 0.22
(dxz,px) 0.21
(px,px) −3.22 0.51 0.47 0.14

The dispersion within the pair of valence px bands is
represented largely by hopping between neighboring px WFs
(recall that the px WF contains some d character, and vice
versa), both being about 0.5 eV. Hopping amplitudes to the
d orbitals are tpd ≈ 0.2–0.3 eV. In the conduction bands, the
dxy orbital has hopping amplitude |t | ∼ 0.17 eV to its partner
within the cell as well as to its replicas in neighboring cells
in both directions. The hopping to the px orbital (0.33 eV) is
twice as large, and apparently is the dominant contributor to
the 3.5 eV bandwidth. Due to the relative orientations, hopping
to the other d WFs is no more than half as large as the dxy-dxy

one. The other two d WFs form rather narrow bands, reflected
by smaller hopping amplitudes; note that both have hopping
to the px orbital of 0.21–0.24 eV.

IV. MANY-BODY HAMILTONIAN AND RANDOM
PHASE APPROXIMATION

The random phase approximation applies an interaction to
the noninteracting Hamiltonian

H0 =
∑
k,ab

H k
abc

†
k,ack,b, (1)

where a and b are composite orbital and spin indices of
the basis Wannier orbitals. The interaction Hamiltonian, in
general, is in the following symmetric form:

H1 = 1

2

∑
i

∑
abcd

Uabcdc
†
iacibc

†
iccid +

∑
〈i,j〉

∑
abcd

Vabcdc
†
iacibc

†
jccjd ,

(2)

where U and V represent on-site and intersite (only nearest
neighbors) interactions, respectively. Equation (2) can be
Fourier transformed into

H1 = 1

2N

∑
kpq

∑
abcd

Fabcd (q)c†k,ack+q,bc
†
p+q,ccpd , (3)

in which Fabcd (q) = Uabcd + γ (q)Vabcd is the interaction
kernel matrix. In the second term, γ (q) = ∑

l e
iq·Rl (l running

over the nearest-neighbor pairs of sites) is the structure
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factor, which brings in q dependence into Fabcd (q). The bare
susceptibility is calculated as

χ0
abcd (q,ω) =

∑
k

Gad (k,ω)Gcb(k + q,ω), (4)

where Gab(k,ω) is the noninteracting Green’s function

Gab(k,ω) =
∑

n

〈a| nk〉〈nk |b〉
ω + μ − εnk

, (5)

and the summation is taken over all bands. Applying the RPA,
which sums up the higher-order diagrams in the geometric
series, we have the full susceptibility presented in a matrix
equation

χ (q,ω) = [I + χ0(q,ω)ReF (q)]−1χ0(q,ω), (6)

where a matrix χ is formed from χabcd by contracting the first
pair of indices and the last pair of indices.

So far we have derived a very general formula for an
arbitrary interaction Hamiltonian. To study our case, next
consider a more specific model in the form of an extended
Hubbard Hamiltonian, following Kuroki et al.’s model,43 but
add an extra intersite interaction term:

H1 =
∑

i

[
U

∑
a

nia↑nia↓ + U ′ ∑
a �=b

∑
σ,σ ′

niaσ nibσ ′

− J
∑
a �=b

Sia · Sib + J ′ ∑
a �=b

c
†
ia↑c

†
ia↓cib↓cib↑

]

+
∑
〈i,j〉

∑
a,b

Vabnianjb, (7)

in which a,b are orbital indices, i,j are site indices of the
lattice, and σ is the spin index. U is the intraorbital Coulomb
repulsion, U ′ is the interorbital Coulomb interaction, t

μν

ij is
the hopping between Wannier orbitals, Vab is the intersite
Coulomb interaction between orbitals a and b, J is the Hund’s
rule coupling, and J ′ refers to pair hopping between orbitals.
From this Hamiltonian, the susceptibility is calculated by

χS(ω,q) = χ0(ω,q)

I − S(q)χ0(ω,q)
,

(8)

χC(ω,q) = χ0(ω,q)

I + C(q)χ0(ω,q)
.

The interaction matrices S(q) and C(q) take the form

Sabcd =

⎧⎪⎨
⎪⎩

U, a = b = c = d

U ′, a = c �= b = d

J, a = b �= c = d

J ′, a = d �= b = c

,

(9)

Cabcd =

⎧⎪⎨
⎪⎩

U + 2Vac Re γ (q), a = b = c = d

−U ′ + J, a = c �= b = d

2U ′ − J + 2Vac Re γ (q), a = b �= c = d

J ′, a = d �= b = c

,

where U , U ′, J , and J ′ terms appear only if all indices are
orbitals on the same site. Finally, we can also calculate the

macroscopic susceptibilities by performing a summation over
the orbital indices:

χmac(q,ω) =
∑
ijkl

Sijχijkl(q,ω)Skl, (10)

in which Sij is the overlap matrix, and in our case it has the
form of a delta function δij .

V. SPIN AND CHARGE SUSCEPTIBILITY

With our model just constructed, we calculate the spin and
charge susceptibilities. The model is a multiband extended
Hubbard model on a 2D rectangular lattice with four sites (two
Ti and two N) per unit cell. For the on-site interaction terms, we
use Udd = U ′

dd = 1.5 eV, Upp = 1.0 eV, and J = J ′ = 0.2 eV.
These values are somewhat smaller than might be used in a
traditional Hubbard model calculation; this is partly to com-
pensate for the fact that the RPA has a tendency to overestimate
the strength of the interaction due to the lack of the self-energy
correction.43 Moreover, we are using WFs rather than atomic
orbitals, for which the extension onto neighboring sites will
suppress the intra-atomic interactions U and J .

For intersite interactions, we assume Vac to be spin and
orbital independent, and that it only depends on the distance
between the two sites. Taking into account the Ti-N and Ti-Ti
distances mentioned above, we use VTi-N = 0.5 eV (nearest
neighbor), VTi-Ti = 0.3 eV (second-nearest neighbor). Since
the Wannier functions have contributions from neighboring
sites, it is reasonable to set the intersite Coulomb repulsion
V slightly larger than traditionally used for atomic orbitals.
The calculation is done at T = 0.02 eV (220) K and ω = 0,
with a k mesh of 40 × 40 × 4 and q mesh of 20 × 20 × 2. The
occupation is set at 4.3, simulating x = 0.15 electron doping
in A0.15 TiNCl (since there are two formula units per unit cell)
by raising the Fermi level into the lowest conduction band.

Figure 4 shows the magnitude of the imaginary part
of Green’s function, which provides a view of the Fermi
surface. With a simple, nearly circular Fermi surface
like this, the bare susceptibility is expected44 to be
isotropic out to q = 2kF , with a relatively constant
plateau behavior inside 2kF radius. The intersite Coulomb
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FIG. 4. (Color online) The spectral function −ImG(k,ω = 0) in
the kx-ky plane, showing the oval (nearly circular) Fermi surface for
x = 0.15 electron doping.
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interaction can give rise to charge fluctuation, creating
collective electron motion and possible charge ordering.
Competition between on-site and intersite interaction of
d electrons can lead in principle to a frustration of both spin and
charge ordering. The hybridization between d and p orbitals
opens another channel, that of a charge transfer instability.
One of the interesting questions is whether some combination
of these processes can create excitations that can pair up
electrons, analogous to the behavior found in a d-p model in
the limit of infinite U and nearest-neighbor hybridization.28

In Fig. 5 some representative spin susceptibilities in the
orbital representation are plotted on the two-dimensional basal
plane (qz = 0) in the Brillouin zone (BZ). Since our hopping
integrals have units of eV, the susceptibilities are in units of
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FIG. 5. (Color online) Representative orbital spin susceptibilities
(units: 1/eV). In the basal plane, the axis on the left (longer in
perspective) is qx axis (in units of π/a), and the one on the right
(shorter) is qy axis (in units of π/b). (a) χS

1111, (b) χS
1133, and (c) χS

1177.
Note that the maximum in χS

1133 is located at (π/a,0,0) and not at
2kF . Note the different vertical scales on the panels.

1/eV. To clarify, we denote the orbitals by numbers in the
order (1)Ti1 dxy , (2)Ti2 dxy , (3)Ti1 dz2 , (4)Ti2 dz2 , (5)Ti1 dxz,
(6)Ti2 dxz, (7)N1 px , (8)N2 px . The largest spin susceptibility
is found for χS

1111 (intersite, xy ↔ xy) which has approximate
fourfold symmetry for magnetic fluctuations of the same
orbital dxy on Ti sites. The anisotropic behavior of χS

1133 (on
site, xy ↔ z2) comes from the orthorhombic symmetry of the
lattice, i.e., a �= b, which brings in anisotropic q dependence,
in this case strongly so. The spin fluctuations between
d and p orbitals, χS

1177, have a sizable overall magnitude,
comparable to d-d fluctuation, but small variation with q,
because four neighboring N atoms have almost the same
distance to Ti. Due to the lack of Fermi surface nesting, there
is no divergent behavior in the spin susceptibility, presenting
different physics from that for β-HfNCl, which has two
circular Fermi surfaces located at two high-symmetry (K)
points in the BZ that can provide near-perfect nesting.

Representative charge susceptibilities are shown in Fig. 6.
Often they have similiarities to the spin susceptibilities, with
comparable but somewhat smaller magnitudes. It is known
that in an extended Hubbard model on a square lattice, at
zero frequency, χS and χC have similar q dependence and
only vary in magnitude.45 Without the long-range Coulomb
interaction, charge fluctuation will always be smaller than
spin fluctuation because of the different signs in the RPA
formula. The difference between χS and χC will become more
apparent at nonzero ω. The q dependence of χC is similar to
that of χS but shows somewhat more structure in χC

1111. Note
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FIG. 6. (Color online) Representative charge susceptibilities in
the full Brillouin zone. (a) χC

1111 and (b) χC
1177. The latter quantity is

hardly distinguishable from its spin counterpart. Note the different
vertical scales on the panels.

014509-6



SPIN AND CHARGE FLUCTUATIONS IN α- . . . PHYSICAL REVIEW B 83, 014509 (2011)

-1
-0.5

 0
 0.5

 1 -1

-0.5

 0

 0.5

 1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

(a)

-1
-0.5

 0
 0.5

 1 -1

-0.5

 0

 0.5

 1

 0.2

 0.4

 0.6

 0.8

 1

(b)

-1
-0.5

 0
 0.5

 1 -1

-0.5

 0

 0.5

 1

 0.1

 0.2

 0.3

 0.4

 0.5

(c)

FIG. 7. (Color online) Macroscopic susceptibility: (a) bare;
(b) spin; (c) charge. Note the strong deviation from square symmetry.

that the magnitude of χC
1111 is only half that of χS

1111. The spin
and charge fluctuations within the N p channel are very small
since the p orbitals are fully occupied so fluctuations happen
only as a second-order effect. However, the presence of the
N p band very close to the lowest d conduction band opens
an additional channel for fluctuations between them [χS

1177,
Fig. 5(c), and χC

1177, Fig. 6(b)].
To close the comparison, we show the macroscopic sus-

ceptibilities in Figure 7. The imprint of 2kF is evident.
Beyond 2kF , the susceptibilities decrease slightly and with
(nearly) square symmetry. Inside 2kF , the variation is greater
and displays the rectangular symmetry of the lattice. The
overall spin enhancement of the macroscopic susceptibility
[χS(q)/χ0(q)] near q = 0 is about 1.4. For the model with
the realistic parameters considered here, our test calculations
show that χS will approach divergent behavior when U ∼
4 eV. Since TiNCl has wide 3d bands, it is unphysical
to use U anywhere near 4 eV (we are using 1.5 eV),

so strong spin fluctuation is unlikely to occur in this material.
The macroscopic charge susceptibility has smaller magnitude
and q dependence, but will show divergent behavior when
intersite interaction V is much larger than U , but that
regime is unrealistic for the case studied here. Overall, both
spin and charge susceptibilities show moderate enhancements
compared to the bare susceptibility, without any approach to
an instability toward spin or charge ordering.

VI. SUMMARY

In this work we have constructed a many-body extended
Hubbard model based on a realistic band structure obtained
from density functional theory calculations. The random phase
approximation was applied to obtain the spin and charge
susceptibilities. In a system like α-TiNCl, where the crucial
ingredients of high-temperature superconductivity, such as
strong electron-phonon coupling and good Fermi surface
nesting, seem to be missing, spin and charge fluctuations are
the remaining candidates. The Wannier local orbital basis both
is a physical basis, building in bonding effects, and promotes
the study of orbital-dependent contributions to the suscepti-
bilities. These orbital-dependent matrix element effects are
very strong, with the character of the electron and hole bands
determining the strength and character of the q dependence.

Our calculations show that the spin and charge enhance-
ments of susceptibilities, both intraband and interband, are
modest in magnitude due to moderate correlations. However,
spin and charge fluctuations can produce substantial values
possibly capable of encouraging electrons to pair. One of
the most detailed studies of such effects is that of Monthoux
and Lonzarich,32 who note a “surprisingly rich behavior
even for our chosen simple tight-binding band.” Generalizing
to the multiband system with intersite interaction that we
have treated seems futile; seemingly innocuous changes
in interaction strengths or doping level, or perhaps even
the underlying atomic structure, may have appreciable
effect on the resulting phenomena, so realistic models must
become increasingly more material specific to be useful in
understanding superconducting tendencies.

Although spin fluctuations, from our calculations, are
present to some degree in α-TiNCl, it is worth repeating that the
physics seems very different from the β-structure counterparts
(no Fermi surface nesting) even though both are nonmagnetic
and seem similar in many ways. This class of transition-
metal nitrides is apparently quite distinct from the recently
discovered Fe pnictides, where magnetism is a dominating
feature in the parent compounds. As the nonmagnetic nature of
TiNCl and other MNX materials indicates, as well as seen from
the results from our RPA calculation, charge fluctuations may
play the important role in superconductivity in these systems,
rather than spin fluctuations. Simply put, we do not have a
clear understanding of how superconductivity arises from the
fluctuations, as with all other high-Tc families.
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