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Abstract. The local density theory developed by Hohenberg, Kohn and Sham is extended
to the spin polarized case. A spin dependent one-electron potential pertinent to ground
state properties is obtained from calculations of the total energy per electron made with
a ‘bubble’ (or random phase) type of dielectric function. The potential is found to be well
represented by an analytic expression corresponding to a shifted and rescaled spin dependent
Slater potential. To test this potential the momentum dependent spin susceptibility of an
clectron gas is calculated. The results compare favourably with available information
from other calculations and from experiment. The potential obtained in this paper should
be useful for split band calculations of magnetic materials.

1. Introduction

The Hohenberg, Kohn and Sham theory was developed only for the spinless case, except
for a short discussion (Kohn and Sham 1965) of the spin susceptibility for a uniform
electron gas. Recently Stoddart and March (1970) addressed the spin problem by setting
up a density-functional theory of magnetic instabilities in metals primarily aimed at
making contact with and extending the Hubbard model. This theory also represents some
extension of the Hohenberg, Kohn and Sham work towards a full treatment of the spin
polarized case. ‘

We give in the present papert the general theory for the spin polarized case as well
as some approximate results for potentials and spin susceptibilities. First we present an
extension of the Hohenberg and Kohn (1964) paper. It is found that a straightforward
generalization does not work; in the spin case there is no obvious reason to expect a
unique relation between the spin dependent potential and the spin density (in the one-
particle case we can show that there are many potentials which give the same spin
density). We then generalize the Kohn and Sham (1965) discussion of ground state
properties. This leads in a fairly straightforward way to spin dependent effective potentials
and two coupled equations for the two components of the spinor wavefunction. In the
simplest approximation analogous to the one used by Kohn and Sham only ‘spin up
and ‘spin down’ potentials for an electron gas enter. In the Hartree—Fock approximation
the potentials become

V@ = — 4(3p®/4m)'® Ryd (1.1)

1 Preliminary reports of the present work were presented at the Menton (Hedin and Lundqgvist 1972) and
Wildbad (Hedin 1972) conferences.
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where p™ is the density (in atomic units) of electrons with spin o (x is given as + for
‘spin up’ and as — for ‘spin down’ electrons).

As a comparison the Slater (1968a, b) potential is 3 larger just as in the spinless case.
When we include correlation a simple analytical form can no longer be expected for the
potentials. We find however that the numerical results obtained by using the ‘bubble’
approximation, to be discussed later, can be quite accurately represented by the simple
expression

()N 1/3
b = A(p)(z’; ) + B(p) 12)

where p is the total density
p = p'*) 4 pt=) (1.3)

and the potentials 4 and B are given by the same analytical expression as used in the
spinless case by Hedin and Lundqvist (1971).

Given the total density, we thus see that V@ depends on p® in the same way as in the
Hartree—Fock case, we just have a shift (B) and a rescaling. The rescaling is considerable,
at the lower metallic densities the Hartree—Fock result is reduced by almost a factor of
two, and the larger Slater potential by correspondingly more. This weaker dependence
on spin polarization is in accord with general expectations on the réle of correlation
(see eg Wigner 1938, Herring 1966). It is also in accord with results from energy band
calculations using a Slater potential with a constant coefficient, which have shown that
values of this coefficient much smaller than unity are needed to obtain reasonable
agreement with experiment (see eg Wakoh and Yamashita 1966, Connolly 1967 and
Slater 1968a).

In the approximation scheme proposed here, as in that of Kohn and Sham (1965)
no density gradient terms are included. To judge the seriousness of that omission the
g dependent paramagnetic susceptibility was calculated from the proposed potential
and the result compared with that from other more refined calculations and from experi-
ment. The results indicate that it may be possible to neglect the gradient terms in many
applications.

2. Generalization of the Hohenberg and Kohn theory

Hohenberg and Kohn (1964) developed a local density theory for a nondegenerate
ground state based on two fundamental theorems, namely that the ground state wave-
function is a unique functional of the charge density and that there exists a ground state
energy functional which is stationary with respect to variations in the charge density.
These results can be generalized to the spin dependent case by replacing the scalar external
potential w(r) by a spin dependent potential w,,(r) and replacing the charge density
p(r) by the density matrix p_,(r). However in this case there is no obvious one-to-one
correspondence between w_; and p_; (see the Appendix) and we have to slightly modify
the proof by Hohenberg and Kohn to show the unique relationship between the ground
state |¥) and P51).
Consider a hamiltonian written in second quantization as

p2
H = ZJ i) (%) o (r) dr
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+3 ; j o (1) g (rule — 1) Yylr') Y fr) dr de’

2.1
+ zﬁj U2 () w ) Gr) dr @1
where v(r — #') is the Coulomb potential e?/(4ne,|r — #'|) and w,; is a 2 x 2 hermitian
matrix. The expectation value of H in the ground state is

E=T+V+ Zﬁj Wag(F) puli) dr (2.2)

where T and V are the expectation values of the kinetic and potential energies and where
the density matrix p,, is defined as

Papr) = CEWF (N Y (0]E) (2.3)

From its definition we see that p,; is a hermitian matrix like w,,.

Let us now assume that there exist two different ground states |‘P> and \‘I”) cor-
responding to the hamiltonians H and H’ and the potentials w and w' in equation 2.1,
which both give the same density matrix p,;. Owing to the assumed nondegeneracy of
the ground state and to the minimal property of the expectation value of the hamil-
tonian with respect to variations of the wavefunction we have the strict inequality

CPHYY < (PIHS = (CVHES + (F|H — B9 (2.4)
or
E<E + Zﬁ:j {wog(r) — Wip(r)} ppa(r) dr (2.5)

Interchanging primed and unprimed quantities (remember that p,;, = p,s) and adding
we have

E+E<E+E (2.6)

However this is impossible and thus the starting assumption that |¥) and ¥’ are
different is false. We have thus shown that the ground state and hence all ground state
properties like the total energy and the one-particle Green function are functionals of
the density matrix p,.

The proof that E given in equation 2.2 is stationary with respect to variations in p,,
under the subsidiary condition that the number of electrons is conserved

N = ZJ Paolr) dr (2.7)

follows precisely as in the Hohenberg and Kohn paper; a change m p,; from the correct
"density matrix corresponds to a change in the wavefunction from the correct state
function and thus by the variational principle to a higher energy.

The two basic theorems just discussed say nothing about how wide a class of functions
P.4(r) 18 defined by equation 2.3, that is correspond to N-particle wavefunctions. This
N-representatibility condition puts quite strong limitations on some quantities like the
full density matrix p,4(r, ') (LOWdin 1955) but is probably less severe for the density p(#)
and the density matrix p,4(r). We take as a working hypothesis that reasonably smooth
functions p,(r) do not give an energy less than the ground state energy when used in the
ground state functional,
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3. Generalization of the Kohn and Sham theory

Following Kohn and Sham (1965) we use the minimal property of the functional (2.2)
with the subsidiary condition (2.7) to determine the density matrix p_,(#) corresponding
to the potential w,(r). This gives the equations

0Ty oFE .
0 s, (3.1
Spr) T Sp) O )

Wp(r) + ZJ P, F ) v(r — ¥)dr' d,, +

¥

Here T, is the kinetic energy functional for a system of noninteracting Fermi particles
and E, is defined from the relation T + V = Ty + V, 4+ E,., where V is the classical
Coulomb energy. The constant A is the Lagrange parameter associated with particle
conservation. Noting the similarity between equation 3.1 and the corresponding equation
for the noninteracting case we can get the density matrix by solving the coupled set of
one particle Schrodinger equations

h* OE,.
— V%S —rdr' S + (B ¥ = ED¢W(r) (3.2)
%: ( 2;11 af + Z jp;, (l" V) ¥ af + ‘Va,{i .V) 0,09!,;( >¢ ¢ ) ‘ 7
and summing up to the Fermi level,
Py =2 V() pP*(r) (3.3)

E() <Er

We now have a perfectly well defined and exact procedure to calculate the density matrix
if only we know the functional E, {p,4(r)} or the exchange-correlation potential B (r)
defined by

SE
= e (3.4)

¥ 5%[3(")

To obtain a reasonable approximation for E, we take the external potential as
slowly varying and divide the electronic system into small boxes. In each box the electrons
can then be considered to form a spin polarized homogeneous electron gas with spin-up
and spin-down densities p'*)(r) and p‘~)(r) given by the eigenvalues of the density matrix
pap(r). X €, (p'™, p'7)) is the exchange-correlation energy per particle of a spin polarized
electron gas we have for the clectronic system in the limit of slowly varying density

E. {pyr)} = J ) + p )} e V), p 7)) dr (3.5)

Choosing a local coordinate system with z axis along the direction of the local spin
2,50 5,P,5(F), WE get by using equations 3.4 and 3.5
é

vl = cp® P+ o) elp™), p0) (3.6)

4. A ‘two-bubble’ approximation for the exchange-correlation energy

To obtain numerical results for the exchange-correlation potential we employ a general-
ized random phase expression for €,,(p'™), p'™’). We start from the well known exact
expression for €, in terms of the polarization propagator (Hubbard 1957)
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1 (¢di 1
=—-—| — — d 4.1
€xc Wl 7 ;v(q)(zm.JP(q, ) dow + p) (4.1
where v(q) is the Fourier transform of the Coulomb potential.
A
v(g) = pe 4.2)

4 is an interaction strength parameter, p is the total density of electrons (equation 1.3),
and unit volume is assumed.

P(q, w) is the reducible polarization propagator of the spin polarized electron gas
which can be expressed in the irreducible propagator A(g, @) through

Plq, o) = Alq, w) {1 — vl(q) . Aq, w)} ! (4.3)

We now approximate A(g, w) by the ‘two-bubble’ expression

iA(g, © Q Q (4.4)

spin up spin down
electrons electrons

In order to make equation 4.1 more suitable for numerical calculation we split €,, into
two parts

€ = € + €, 4.5)
where €, is the ordinary Hartree-Fock contribution
3 e 1 (+)4/3 4/3
= —6 * (-4 Ryd 4.6
3 ( 4n) (T ) Ryd) (46)

Since the propagator P(q,w) is analytic in the quarter plane Rew > 0,Imw > 0 we
can deform the integration contour along the real axis to an integration along the
imaginary axis. The integration over the interaction strength parameter can be performed
analytically. After some algebra, going over to dimensionless variables according to
g = 2kg Q, w = (2kg)* W/(2m), we arrive at the formula

(=21 f 7 " 40 AW Q2 [w(Q, W) — In {1 + o(Q, W)}] (Ryd) 4.7)

i OC%]”; [

The quantities appearing (4 7) are defined as follows

0, W) = 225 B, 0. x3W) + x,B(,0, 3 )
Lf, W0 -0t W40+ Q)
B(Q I/V) Q {1 + 4Q3 In W32 4+ Q2(1 _ Q)2
-3 (ta -1 g_ﬁgi + tan~! Q—_WQ—Z)} (4.8)
4 1 4\
Tra = ; oy = (55) ~ 0:52106

t= E‘p' Xy = (2x)717 Xy = (2 — 2x)7 12
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Table 1. The correlation energy e, for different r, and spin polarizations x

x ro=10 20 30 4.0 50 66

05 —01573 —01234 —-01053 - 00935 —0-0848 —-00781
04 —0'1558 —01222 —0-1044 — 00926 — 00841 —-0-0774
03 -0-1511 —01187 —-0-1015 —0-0901 —0-0819 - 00754
02 —0-1425 —0:1124 - 00963 —-0-0857 —0-0780 —0-0720
01 —0:1290 —0-1025 —00883 —0-0789 —0-0720 —0:0667
0-0 —0-1040 — 00850 ~00746 — 00674 —0:0620 —-00579

In table 1 we give the correlation energy €, calculated from equation 4.7, as a function of
r., and the fraction of ‘spin-up’ electrons, x. The numerical accuracy is 1 %. The exchange
energy €, is given by the analytical expression (4.6).

5. A parametrized form of the exchange-correlation energy

In order to make our results for the exchange-correlation energy ¢, (and hence for the
exchange-correlation potential v,.) easy to use in spin polarized bandstructure calcula-
tions we parametrize the results in table 1. In what follows we will use the following
notation: x as subscript means exchange, ¢ as subscript means correlation, P as super-
script means the paramagnetic state, x = 4, and F as superscript means the ferromagnetic
state, x = 0. We denote by y, and g4, the contributions to the chemical potential from
the exchange and correlation energies. u, and . are given by the formulae (see eg Hedin
and Lundqvist 1969)

R R (5.1)
From the equations 4.6 and 5.1 we see that |

wo= e — &) (5.2)
where y = 2a/(1 — a) and a = 27!/, If we define a function f'(x) vy

flx) =01 —a H{x*? + (1 — x)*° - a} (5.3)
we can write the exchange energy €, in equation 4.6 in the form

=& T i fx) (5.4)

Now it turns out that also our approximate numerical results in table 1 for the correlation
energy can be represented within our numerical accuracy by a similar expression

€. =¢ + 77 v f(x) (5.5
where the quantity v, is defined by
v, = y(e — €) (5.6)
According to (4.6) and (5.1) the r, dependence of the quantities € and £ is given by
0
6W9=—% (5.7)

) =% € (r,) | (5.8)
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where

3
T 2x o
The r, dependence of the quantities €f and € can be represented, within our numerical
accuracy, by the same analytic expressions as used by Hedin and Lundqvist (1971)

<e-ofs

~ 09163 (Ryd) (5.9)

€

& — — CFF ({—F) (5.10)
where
1 z 5, 1
Fz)=(1+z%)n I+ _J+3-7 -3 (5.11)
and
¢ = 00504 cF = 00254
P =130 =175 (5.12)

We thus find that the numerical results in table 1 can be reproduced with the aid of the
two functions F and f and four parameters ¢, ¢F, /¥, and rF.
We remark that, according to equations 5.1 and 5.10

rP
pe(r) = — ' In (1 + E)

rF
pi(r) = — cFln (1 + Z) (5-13)
The parameters ¢, ¢F, ¥, and ¥ obey, within an accuracy of 19 the scaling relations
cf =1cP rF o= 24/3F (5.14)

appropriate to the random phase approximation (Hedin 1965).

At this stage we point out that it is rather easy to apply our results in more sophisticated
treatments of the electron gas correlation if we assume that a polarization dependence
of the form 5.5 will survive also in these treatments. We then just have to insert the correct
values of €, and € in equation 5.5. Since the x dependence of ¢, is rather weak such a
procedure should give a reasonable interpolation between the paramagnetic and the
ferromagnetic results.

6. A parametrized form of the exchange-correlation potential

From equation 3.6 we see that the quantity relevant to a one-electron description is

O€
U = eld ™07 + p 505 (6.1
Ji
Using previous equations we get after some straightforward algebra:
Vel = (f 4+ v) @)1 + il — v + 7 f(x) (6.2)
where
To= e — e — 3 — &) (6.3)

For ¢!’ we get the same kind of equation with x and 1 — x interchanged. Note that if we
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neglect correlation, the quantities v,, #f and t, vanish and 7’ reduces to the Kohn-Sham
modification of the Slater approximation o™ =+£(2x)!® = 2V'") (Slater 1968a,b).
From equation 6.2 we also see that in the paramagnetic case, x = £, we have v}’ = (&,
( f&) = 0) which of course is the usual Kohn—Sham result. To give a feeling for the density
dependence and relative importance of the different terms in ¢{]’ we tabulate them in
table 2 as functions of r,.

Table 2. Parameters for the exchange-correlation potential, v,

4 = B = !
Fs _HE _:U'l: Ve _(:uxp + vc) Ve _luf — T (X = })
10 1222 0173 0-284 0938 0-457 0011 1-649
20 0611 0-140 0-204 0-406 0344 0-006 0-862
30 0407 0121 0-161 0-246 0282 0-004 0-596

4:0 0-305 0-108 0-133 0173 0241 0002 0-461
50 0244 0-098 0-112 0132 0210 0001 0-378
60 0-204 0-:090 0-096 0:108 0-186 0-001 0323

Remembering that there is an uncertainty in our estimates for uf, of about 0-02 —
004 Ryd (Hedin and Lundqvist 1969) we see from table 2 that the quantity 7, may
be neglected. By using better dielectric functions (Singwi et al 1970, Geldart and Taylor

0 02 04 06 08 10x

¥ye (Ryd)

Figure 1. Our result for the exchange-correlation potential for spin-up electrons as a function
of the fraction (x)} of spin-up electrons. The », value for each curve is indicated in the figure.
The parametrized expression in equation 6.4 gives accurately. the same result except for
small v (say x < 0-1). The broken curves are with correlation neglected.
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1970) in estimating €,, we can bring down the error to about 0-01 Ryd;still, however,
7, can be neglected.
We can now write our exchange-correlation potential ¢{7 as

vie (e, X) ="A(r) (2x)'° + B(r,) (6.4)

[

where
A(ry) = 1(ry) + vo(ry)
B(rs) = ,ug(ra) - vc(rs) (65)

According to equation 6.4 the derivative, with respect to x, of v!f’ goes to infinity
as x % when x tends to zero. This is due to our choice of parametrization. Actually the
derivative of v'7’ goes to infinity as x~ '/ in the original ‘two-bubble’ approximation
given by equation 4.4.

If accurate representation for small x (say x < 0-1) is needed, the parametrization
should not be used.t

In figure 1 the potential v!¢’ is shown as a function of x for r, = 2, 3, 4. The correspond-
ing Hartree-Fock potentials are also shown (by broken curves) demonstrating the
strong effect of correlation.

In order to make contact with spin polarized band calculations we follow De Cicco
and Kitz (1967) or Slater (1968a) and expand v,, in equation 64 to first order in the
difference between spin-up and spin-down densities, p'™) — p¢~),

1
U (1o, X) = e(r) + %A(rs);(i)‘“ - p7) (6.6)
We then define factors B(r,) and d(r,) which express the effect of correlation
Hre(re) = Bl (ry) (6.7)
Alrg) = 0(r) i (r,) (6.8)

The parameter f(r,) is extensively discussed in the paper by Hedin and Lundqvist (1971).
We just mention that it varies between about ¢ and % for metallic densities. The parameter
o(r,) is displayed in figure 2 together with B(r,) calculated in rRpA as well as from the
dielectric function of Singwi et al (1970).

Wakoh and Yamashita (1966) have done spin polarized approximately seltconsistent
band structures calculations on iron using f§ = 8. Considering the parameter § as the
most important parameter for determining the exchange splitting and hence for the
saturation magnetization they had to use the value § = 0-75 to get agreement with the
experimental value. De Cicco and Kitz (1967) have done similar calculations on iron
and indicate that f = 105 and § = 0-75 might give better agreement with neutron
scattering experiments, while the spin density per unit cell came out somewhat too
large. Connolly (1967) has done selfconsistent calculations on nickel. Connolly like
Wakoh and Yamashita used § = 6. He found that the Slater approximation (6 = 1-5)
gave qualitative disagreement with experiment while 6 = 1 gave more realistic results.

The results just quoted indicate the magnitude of the parameters 8 and 5. We empha-
size however that one should not use constants for the parameters 8 and J, but rather

T For x < 01 the result for v, is, from a numerical viewpoint, best calculated directly from the self encrgy
{first order dynamically screened exchange diagram, cf Hedin 1965) rather than through the total energy.
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Figure 2. The parameters ff and ¢ defined in equations 6.7 and 6.8 as functions of »,, calculated
in a RPA-type approximation. The curve marked STLS shows the [ values obtained from the
Singwi er al (1970) correlation energies.

density dependent functions. Actually there is no need to use the parameters § and J at
all; they were introduced just to make contact with existing band structure calculations,
Instead one should use the potential (6.4). We want to stress once more that a calculation
with this potential is computationally no more difficult than the ones already performed.

7. Results for the paramagnetic susceptibility

We consider an electron gas subject to an infinitesimal space dependent magnetic
field B(r) along the z direction and study the paramagnetic spin susceptibility. The
magnetic field will cause changes in spin-up and spin-down densities dp'* and ép¢~’
The change in effective potential will be the sum of two terms, one coming from the
external field and the other from the changes in the potentials ¢! due to the spin density
changes. Expanding to first order in the spin density changes we obtain

2 HINP autH)
SV r) = pg B(r) + (%Z):Cﬁ“)) opt(r) + (52“ ) Sp=r)

(7.1)
- o) )
SVr) = — g Blr) + (avm) 6p' T r) + (5 = )> 6p'(r)

where g is the Bohr magneton. From first order perturbation theory we get, going over
to Fourier transforms,

sp'ig) = — T@Eu(ff—) Sy
p' " q) 2 g (q)
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(7.2)
5 g) = — S5 u («q—) SV (g)
T qF
Here g is the Fermi momentum and (g) is the well known function
1 4—-4g*> |2+4¢g
== 1 7.3
1(g) 2+ % n2_q (7.3)

By using the symmetry relations

Ul Al \P vl NF ovi; M\
(W) - (ap<'>) (ap(‘>> N (ap‘“) 74
we find from equations 7.1 and 7.2 that
Sp™) +6p7) == 0 (7.5)

Defining the susceptibility y(q) by
_ Hoks{op(q) — 6p' " (q)}

%(q) = (7.6)
@ B@)
where 4, is the permeability of the vacuum we get
Zott(q/q)
xg) = — 22 (7.7)
P =T - Tutg/a)
Here )
3 m (0%
I T e — — Lc (7'8)
4 ql27 ( axz )x=1/2

and y, is the Pauli paramagnetic susceptibility. Using our parametrized form (5.4), (5.5)
of the exchange-correlation energy €,., a form which is especially accurate in the para-
magnetic region (x = ), (7.8) can be written

I = —1a2r2A(r) (7.9)

1

In table 3 our ¢ = O susceptibility enhancement y(0)/y, = (1 — I)” ", calculated from

Table3. Spin susceptibility enhancement (g = 0)

Yo HF Here Rice DG SV SPw 8T

10 1-20 115 115

20 1-50 1-28 1-27 1-31

30 1-99 1-43 1-39 1-47

40 297 1-60 1-48 165 174 1-50 1-65
(+0-08)

50 5-85 1-82 1-85

HF = local density approximation with correlation neglected
Here = local density approximation. Equations 7.7 and 7.9
Rice = Rice (1965). Similar results were obtained by Hedin and Lundgvist (1969).
DG = Dupree and Geldart (1971). Similar results were obtained by Hamann and Over-
hauser (1966) and by Pizzimenti and Tosi (1971).
SV = Conduction electron spin resonance data from Schumacher and Vehse (1963).
sPw = Spin wave data taken indirectly from Rice (1968).
sT = Data from measurement of total spin susceptibility taken indirectly from Dupree
and Geldart (1971).
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equation 7.9, is shown as a function of r, together with other theoretical estimates and
experimental results. From table 3 we see that the result of our calculation of the spin
susceptibility enhancement in the long wavelength limit is as close to the best experi-
mental data as the latest and presumably the most careful theoretical estimates by Dupree
and Geldart (197.) and by Pizzimenti and Tosi (1971). This is surprising since our
numerical results being obtained in a ‘two-bubble’ approximation, do not account for
exchange and short range correlation effects, which have been taken into consideration
in the other calculations. The comparison of the g dependence of our susceptibility with
that of Singwi et al (considered to be the best so far) furnishes a direct test of the validity
of the local density approximation. In their article they write the susceptibility in the same
form as we do (equation 7.7) only they get a g dependent I (= I(g)).

However they find the g dependence of I to be rather weak, especially for g < k¢
and for low densities (r, > 3). We take this as an indication of the reliability of the local
density approximation at least for disturbances with appreciable Fourier components
only up to the Fermi momentum.

8. Concluding remarks

The local density theory developed by Hohenberg, Kohn and Sham in the middle
sixties, has in this paper been extended to the spin polarized case. We work with a spin
dependent one-electron potential w,4(¥) as a probe which drives the electronic system
into different spin polarized states which we specify with a spin density p,,(r). The
potential w,, is equivalent to a spin independent potential V() and an interaction
between a magnetic field B(r) and the spin magnetic moment. Qur main interest is in
systems which are intrinsically spin polarized, like transition metals and non-singlet
atoms. The potential w,; can then be allowed to approach zero.

We consider in this paper only ground state properties like spin densities and total
energies. Numerical estimates are made with a simple extension of the random phase
approximation, cf equation 4.4. The resulting potentials are shown in figure 1. The
full drawn curves give the correlated potentials v\, (r,, x) acting on spin-up electrons.

The potential is a function of electron density, r,, and spin polarization, x = p‘*/p.
The broken curves give o' (r,, x), the exchange only results. There is clearly a dramatic
difference between the two potentials, the v,, curves are much flatter and have an ap-
preciable value also for x = 0. This is completely in accord with general expectations
(Wigner 1938) on the réle of correlation.

The slope of the curves at x = 0-5 (the paramagnetic case) can be checked against
calculated and measured results for the spin susceptibility; the slope is in very good
agreement with these other results. There are of course still uncertainties in the values
for the potentials v,., but they seem fairly small compared with the deviations from v,
(exchange-only) results. We also remind here that the potential proposed by Slater
(1968a) is 3 times larger than v,, it thus cuts through and has a vastly larger slope, while
its average value comes rather close to that of v,..

As regards the application of our potentials to band calculations, it is quite clear
that they will give much better results than the exchange-only or the Slater potentials.
If they will give satisfactory results is very hard to say, they suffer from the same drawback
as the paramagnetic potentials discussed recently (Hedin and Lundqvist 1971), namely
that no gradient terms are considered. Our results for the susceptibility indicate that
the gradient terms may possibly be neglected, but only actual band calculations can
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settle this question. Such calculations are facilitated by the parametrized form in which
our potentials are given.¥

The parametrizations also lend themselves to an easy semiempirical generalization
of our results (cf equation 5.5) where the input is the paramagnetic and the ferromagnetic
energies; alternatively the paramagnetic spin susceptibility could be used.
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Appendix. The relation between the one-particle potential w,, and the spin density p, s
Let W%'(r) be the ground state of the hamiltonian

h? 5
Hap = =55 Vi0up & Waglt) (A1)

and let ¢l be the cartesian components of the Pauli spin vector operator. We define
the unit vector &(#) through the equation

. V() oy PR ()

u(r) = AN {A.2)
Using the fact that

Z G(;/)z Uo(ci’)ﬂ’ = 20,5055 — OnpOyp (A.3)
it is now easy to show that

;ma)w P (r) = POUr) (A.4)
Defining the potential V,4(r) by

Vapr) = Vo) {(@16),5 — S} (A.5)
where V,(r) is some arbitrary spin independent function, and the hamiltonian H,; by

Hyp = H,g + Vilr) (A.6)

we can immediately see that the ground state W'(r) of H is an eigenstate of the hamil-
tonian H' no matter what scalar potential Vy(r) we put into (A.5). For small enough
Voo W@ is also the ground state of H'. We thus have a class of potentials w,, which all
give the same spin density p,;.
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